Hamiltonian systems with linear potential and elastic constraints
Fundamenta Mathematicae (1998)
- Volume: 157, Issue: 2-3, page 305-341
- ISSN: 0016-2736
Access Full Article
topAbstract
topHow to cite
topWojtkowski, Maciej. "Hamiltonian systems with linear potential and elastic constraints." Fundamenta Mathematicae 157.2-3 (1998): 305-341. <http://eudml.org/doc/212295>.
@article{Wojtkowski1998,
abstract = {We consider a class of Hamiltonian systems with linear potential, elastic constraints and arbitrary number of degrees of freedom. We establish sufficient conditions for complete hyperbolicity of the system.},
author = {Wojtkowski, Maciej},
journal = {Fundamenta Mathematicae},
keywords = {Hamiltonian system with linear potential; completely hyperbolic; Lyapunov exponents},
language = {eng},
number = {2-3},
pages = {305-341},
title = {Hamiltonian systems with linear potential and elastic constraints},
url = {http://eudml.org/doc/212295},
volume = {157},
year = {1998},
}
TY - JOUR
AU - Wojtkowski, Maciej
TI - Hamiltonian systems with linear potential and elastic constraints
JO - Fundamenta Mathematicae
PY - 1998
VL - 157
IS - 2-3
SP - 305
EP - 341
AB - We consider a class of Hamiltonian systems with linear potential, elastic constraints and arbitrary number of degrees of freedom. We establish sufficient conditions for complete hyperbolicity of the system.
LA - eng
KW - Hamiltonian system with linear potential; completely hyperbolic; Lyapunov exponents
UR - http://eudml.org/doc/212295
ER -
References
top- [L-W] N. I. Chernov and C. Haskell, Nonuniformly hyperbolic K-systems are Bernoulli, Ergodic Theory Dynam. Systems 16 (1966), 19-44. Zbl0853.58081
- [O-W] I. P. Cornfeld, S. V. Fomin and Ya. G. Sinai, Ergodic Theory, Springer, Berlin, 1982.
- [O] J. Cheng and M. P. Wojtkowski, Linear stability of a periodic orbit in the system of falling balls, in: The Geometry of Hamiltonian Systems (Berkeley, Calif., 1989), Math. Sci. Res. Inst. Publ. 22, Springer, 1991, 53-71. Zbl0742.58017
- [KS] A. Katok and J.-M. Strelcyn (with the collaboration of F. Ledrappier and F. Przytycki), Invariant Manifolds, Entropy and Billiards; Smooth Maps with Singularities, Lecture Notes in Math. 1222, Springer, 1986.
- [L-M] H. E. Lehtihet and B. N. Miller, Numerical study of a billiard in a gravitational field, Phys. D 21 (1986), 93-104. Zbl0607.70011
- [L-W] C. Liverani and M. P. Wojtkowski, Ergodicity in Hamiltonian systems, in: Dynamics Reported (N.S.) 4, Springer, 1995, 130-202. Zbl0824.58033
- [O-W] D. Ornstein and B. Weiss, On the Bernoulli nature of systems with some hyperbolic structure, Ergodic Theory Dynam. Systems 18 (1998), 441-456. Zbl0915.58076
- [O] V. I. Oseledets, A multiplicative ergodic theorem: characteristic Lyapunov exponents of dynamical systems, Trans. Moscow Math. Soc. 19 (1968), 197-231. Zbl0236.93034
- [R-M] C. J. Reidl and B. N. Miller, Gravity in one dimension: The critical population, Phys. Rev. E 48 (1993), 4250-4256.
- [Ro] B. A. Rozenfel'd, Multidimensional Spaces, Nauka, Moscow, 1966 (in Russian).
- [R] D. Ruelle, Ergodic theory of differentiable dynamical systems, Publ. Math. IHES 50 (1979), 27-58. Zbl0426.58014
- [S] N. Simányi, The characteristic exponents of the falling ball model, Comm. Math. Phys. 182 (1996), 457-468. Zbl0871.58046
- [W1] M. P. Wojtkowski, A system of one dimensional balls with gravity, ibid. 126 (1990), 507-533.
- [W2] M. P. Wojtkowski, The system of one dimensional balls in an external field. II, ibid. 127 (1990), 425-432.
- [W3] M. P. Wojtkowski, Systems of classical interacting particles with nonvanishing Lyapunov exponents, in: Lyapunov Exponents (Oberwolfach, 1990), L. Arnold, H. Crauel and J.-P. Eckmann (eds.), Lecture Notes in Math. 1486, Springer, 1991, 243-262. Zbl0744.58023
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.