Hamiltonian systems with linear potential and elastic constraints

Maciej Wojtkowski

Fundamenta Mathematicae (1998)

  • Volume: 157, Issue: 2-3, page 305-341
  • ISSN: 0016-2736

Abstract

top
We consider a class of Hamiltonian systems with linear potential, elastic constraints and arbitrary number of degrees of freedom. We establish sufficient conditions for complete hyperbolicity of the system.

How to cite

top

Wojtkowski, Maciej. "Hamiltonian systems with linear potential and elastic constraints." Fundamenta Mathematicae 157.2-3 (1998): 305-341. <http://eudml.org/doc/212295>.

@article{Wojtkowski1998,
abstract = {We consider a class of Hamiltonian systems with linear potential, elastic constraints and arbitrary number of degrees of freedom. We establish sufficient conditions for complete hyperbolicity of the system.},
author = {Wojtkowski, Maciej},
journal = {Fundamenta Mathematicae},
keywords = {Hamiltonian system with linear potential; completely hyperbolic; Lyapunov exponents},
language = {eng},
number = {2-3},
pages = {305-341},
title = {Hamiltonian systems with linear potential and elastic constraints},
url = {http://eudml.org/doc/212295},
volume = {157},
year = {1998},
}

TY - JOUR
AU - Wojtkowski, Maciej
TI - Hamiltonian systems with linear potential and elastic constraints
JO - Fundamenta Mathematicae
PY - 1998
VL - 157
IS - 2-3
SP - 305
EP - 341
AB - We consider a class of Hamiltonian systems with linear potential, elastic constraints and arbitrary number of degrees of freedom. We establish sufficient conditions for complete hyperbolicity of the system.
LA - eng
KW - Hamiltonian system with linear potential; completely hyperbolic; Lyapunov exponents
UR - http://eudml.org/doc/212295
ER -

References

top
  1. [L-W] N. I. Chernov and C. Haskell, Nonuniformly hyperbolic K-systems are Bernoulli, Ergodic Theory Dynam. Systems 16 (1966), 19-44. Zbl0853.58081
  2. [O-W] I. P. Cornfeld, S. V. Fomin and Ya. G. Sinai, Ergodic Theory, Springer, Berlin, 1982. 
  3. [O] J. Cheng and M. P. Wojtkowski, Linear stability of a periodic orbit in the system of falling balls, in: The Geometry of Hamiltonian Systems (Berkeley, Calif., 1989), Math. Sci. Res. Inst. Publ. 22, Springer, 1991, 53-71. Zbl0742.58017
  4. [KS] A. Katok and J.-M. Strelcyn (with the collaboration of F. Ledrappier and F. Przytycki), Invariant Manifolds, Entropy and Billiards; Smooth Maps with Singularities, Lecture Notes in Math. 1222, Springer, 1986. 
  5. [L-M] H. E. Lehtihet and B. N. Miller, Numerical study of a billiard in a gravitational field, Phys. D 21 (1986), 93-104. Zbl0607.70011
  6. [L-W] C. Liverani and M. P. Wojtkowski, Ergodicity in Hamiltonian systems, in: Dynamics Reported (N.S.) 4, Springer, 1995, 130-202. Zbl0824.58033
  7. [O-W] D. Ornstein and B. Weiss, On the Bernoulli nature of systems with some hyperbolic structure, Ergodic Theory Dynam. Systems 18 (1998), 441-456. Zbl0915.58076
  8. [O] V. I. Oseledets, A multiplicative ergodic theorem: characteristic Lyapunov exponents of dynamical systems, Trans. Moscow Math. Soc. 19 (1968), 197-231. Zbl0236.93034
  9. [R-M] C. J. Reidl and B. N. Miller, Gravity in one dimension: The critical population, Phys. Rev. E 48 (1993), 4250-4256. 
  10. [Ro] B. A. Rozenfel'd, Multidimensional Spaces, Nauka, Moscow, 1966 (in Russian). 
  11. [R] D. Ruelle, Ergodic theory of differentiable dynamical systems, Publ. Math. IHES 50 (1979), 27-58. Zbl0426.58014
  12. [S] N. Simányi, The characteristic exponents of the falling ball model, Comm. Math. Phys. 182 (1996), 457-468. Zbl0871.58046
  13. [W1] M. P. Wojtkowski, A system of one dimensional balls with gravity, ibid. 126 (1990), 507-533. 
  14. [W2] M. P. Wojtkowski, The system of one dimensional balls in an external field. II, ibid. 127 (1990), 425-432. 
  15. [W3] M. P. Wojtkowski, Systems of classical interacting particles with nonvanishing Lyapunov exponents, in: Lyapunov Exponents (Oberwolfach, 1990), L. Arnold, H. Crauel and J.-P. Eckmann (eds.), Lecture Notes in Math. 1486, Springer, 1991, 243-262. Zbl0744.58023

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.