The distributivity numbers of finite products of P(ω)/fin
Fundamenta Mathematicae (1998)
- Volume: 158, Issue: 1, page 81-93
- ISSN: 0016-2736
Access Full Article
topAbstract
topHow to cite
topShelah, Saharon, and Spinas, Otmar. "The distributivity numbers of finite products of P(ω)/fin." Fundamenta Mathematicae 158.1 (1998): 81-93. <http://eudml.org/doc/212304>.
@article{Shelah1998,
	abstract = {Generalizing [ShSp], for every n < ω we construct a ZFC-model where ℌ(n), the distributivity number of r.o.$(P(ω)/fin)^n$, is greater than ℌ(n+1). This answers an old problem of Balcar, Pelant and Simon (see [BaPeSi]). We also show that both Laver and Miller forcings collapse the continuum to ℌ(n) for every n < ω, hence by the first result, consistently they collapse it below ℌ(n).},
	author = {Shelah, Saharon, Spinas, Otmar},
	journal = {Fundamenta Mathematicae},
	keywords = {forcing; Boolean algebras},
	language = {eng},
	number = {1},
	pages = {81-93},
	title = {The distributivity numbers of finite products of P(ω)/fin},
	url = {http://eudml.org/doc/212304},
	volume = {158},
	year = {1998},
}
TY  - JOUR
AU  - Shelah, Saharon
AU  - Spinas, Otmar
TI  - The distributivity numbers of finite products of P(ω)/fin
JO  - Fundamenta Mathematicae
PY  - 1998
VL  - 158
IS  - 1
SP  - 81
EP  - 93
AB  - Generalizing [ShSp], for every n < ω we construct a ZFC-model where ℌ(n), the distributivity number of r.o.$(P(ω)/fin)^n$, is greater than ℌ(n+1). This answers an old problem of Balcar, Pelant and Simon (see [BaPeSi]). We also show that both Laver and Miller forcings collapse the continuum to ℌ(n) for every n < ω, hence by the first result, consistently they collapse it below ℌ(n).
LA  - eng
KW  - forcing; Boolean algebras
UR  - http://eudml.org/doc/212304
ER  - 
References
top- [Ba] J. E. Baumgartner, Iterated forcing, in: Surveys in Set Theory, A. R. D. Mathias (ed.), London Math. Soc. Lecture Note Ser. 8, Cambridge Univ. Press, Cambridge, 1983, 1-59.
- [BaPeSi] B. Balcar, J. Pelant and P. Simon, The space of ultrafilters on N covered by nowhere dense sets, Fund. Math. 110 (1980), 11-24. Zbl0568.54004
- [Go] M. Goldstern, Tools for your forcing construction, in: Israel Math. Conf. Proc. 6, H. Judah (ed.), Bar-Han Univ., Ramat Gan, 1993, 305-360. Zbl0834.03016
- [GoJoSp] M. Goldstern, M. Johnson and O. Spinas, Towers on trees, Proc. Amer. Math. Soc. 122 (1994), 557-564. Zbl0809.03035
- [GoReShSp] M. Goldstern, M. Repický, S. Shelah and O. Spinas, On tree ideals, ibid. 123 (1995), 1573-1581. Zbl0823.03027
- [JuSh] H. Judah and S. Shelah, Souslin forcing, J. Symbolic Logic 53 (1988), 1188-1207.
- [Mt] A. R. D. Mathias, Happy families, Ann. Math. Logic 12 (1977), 59-111.
- [Shb] S. Shelah, Proper Forcing, Lecture Notes in Math. 940, Springer, 1982.
- [ShSp] S. Shelah and O. Spinas, The distributivity number of P(ω)/fin and its square, Trans. Amer. Math. Soc., to appear.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.
 
 