Ideals which generalize (v 0)

Piotr Kalemba; Szymon Plewik

Open Mathematics (2010)

  • Volume: 8, Issue: 6, page 1016-1025
  • ISSN: 2391-5455

Abstract

top
Countable products of finite discrete spaces with more than one point and ideals generated by Marczewski-Burstin bases (assigned to trimmed trees) are examined, using machinery of base tree in the sense of B. Balcar and P. Simon. Applying Kulpa-Szymanski Theorem, we prove that the covering number equals to the additivity or the additivity plus for each of the ideals considered.

How to cite

top

Piotr Kalemba, and Szymon Plewik. "Ideals which generalize (v 0)." Open Mathematics 8.6 (2010): 1016-1025. <http://eudml.org/doc/269000>.

@article{PiotrKalemba2010,
abstract = {Countable products of finite discrete spaces with more than one point and ideals generated by Marczewski-Burstin bases (assigned to trimmed trees) are examined, using machinery of base tree in the sense of B. Balcar and P. Simon. Applying Kulpa-Szymanski Theorem, we prove that the covering number equals to the additivity or the additivity plus for each of the ideals considered.},
author = {Piotr Kalemba, Szymon Plewik},
journal = {Open Mathematics},
keywords = {Base tree; Fusion relation; Trimmed tree; add (d 0(V)); cov (d 0(V)); base tree; fusion relation; trimmed tree},
language = {eng},
number = {6},
pages = {1016-1025},
title = {Ideals which generalize (v 0)},
url = {http://eudml.org/doc/269000},
volume = {8},
year = {2010},
}

TY - JOUR
AU - Piotr Kalemba
AU - Szymon Plewik
TI - Ideals which generalize (v 0)
JO - Open Mathematics
PY - 2010
VL - 8
IS - 6
SP - 1016
EP - 1025
AB - Countable products of finite discrete spaces with more than one point and ideals generated by Marczewski-Burstin bases (assigned to trimmed trees) are examined, using machinery of base tree in the sense of B. Balcar and P. Simon. Applying Kulpa-Szymanski Theorem, we prove that the covering number equals to the additivity or the additivity plus for each of the ideals considered.
LA - eng
KW - Base tree; Fusion relation; Trimmed tree; add (d 0(V)); cov (d 0(V)); base tree; fusion relation; trimmed tree
UR - http://eudml.org/doc/269000
ER -

References

top
  1. [1] Balcar B., Pelant J., Simon P., The space of ultrafilters on ℕ covered by nowhere dense sets, Fund. Math., 1980, 110(1), 11–24 Zbl0568.54004
  2. [2] Balcar B., Simon P., Disjoint refinement, In: Handbook of Boolean Algebras, 2, North-Holland, Amsterdam, 1989, 333–388 
  3. [3] Brendle J., Strolling through paradise, Fund. Math., 1995, 148(1), 1–25 Zbl0835.03010
  4. [4] Brown J., Elalaoui-Talibi H., Marczewski-Burstin-like characterizations of σ-algebras, ideals, and measurable functions, Colloq. Math., 1999, 82(2), 277–286 Zbl0940.28002
  5. [5] Ellentuck E., A new proof that analytic sets are Ramsey, J. Symbolic Logic, 1974, 39(1), 163–165 http://dx.doi.org/10.2307/2272356 Zbl0292.02054
  6. [6] Galvin F., Prikry K., Borel sets and Ramsey’s theorem, J. Symbolic Logic, 1973, 38(2), 193–198 http://dx.doi.org/10.2307/2272055 Zbl0276.04003
  7. [7] Hadamard J., Sur les caractères de convergence des séries a termes positifs et sur les fonctions indéfiniment croissantes, Acta Math., 1894, 18(1), 319–336 http://dx.doi.org/10.1007/BF02418282 
  8. [8] Jech T., Set Theory, Springer Monogr. Math., Springer, Berlin, 2003 
  9. [9] Kalemba P., Plewik Sz., Wojciechowska A., On the ideal (v 0), Cent. Eur. J. Math., 2008, 6(2), 218–227 http://dx.doi.org/10.2478/s11533-008-0021-0 Zbl1151.03027
  10. [10] Kechris A.S., Classical Descriptive Set Theory, Grad. Texts in Math., 156, Springer, New York, 1995 Zbl0819.04002
  11. [11] Kulpa W., Szymański A., Decomposition into nowhere dense sets, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys., 1977, 25(1), 37–39 Zbl0344.54007
  12. [12] Kysiak M., Nowik A., Weiss T., Special subsets of the reals and tree forcing notions, Proc. Amer. Math. Soc., 2007, 135(9), 2975–2982 http://dx.doi.org/10.1090/S0002-9939-07-08808-9 Zbl1121.03056
  13. [13] Matet P., A short proof of Ellentuck’s theorem, Proc. Amer. Math. Soc., 2001, 129(4), 1195–1197 http://dx.doi.org/10.1090/S0002-9939-00-05653-7 Zbl0962.03042
  14. [14] Moran G., Strauss D., Countable partitions of product spaces, Mathematika, 1980, 27(2), 213–224 http://dx.doi.org/10.1112/S002557930001010X Zbl0459.04001
  15. [15] Newelski L., Rosłanowski A., The ideal determined by the unsymmetric game, Proc. Amer. Math. Soc., 1993, 117(3), 823–831 Zbl0778.03016
  16. [16] Plewik Sz., On completely Ramsey sets, Fund. Math., 1987, 127(2), 127–132 
  17. [17] Plewik Sz., Ideals of nowhere Ramsey sets are isomorphic, J. Symbolic Logic, 1994, 59(2), 662–667 http://dx.doi.org/10.2307/2275415 Zbl0809.04007
  18. [18] Rosłanowski A., Stepr-ans J., Chasing Silver, Canad. Math. Bull., 2008, 51(4), 593–603 http://dx.doi.org/10.4153/CMB-2008-059-2 
  19. [19] Shelah S., Spinas O., The distributivity numbers of finite products of P(!)/ fin, Fund. Math., 1998, 158(1), 81–93 Zbl0949.03044
  20. [20] Scheepers M., Gaps in ωω, In: Set Theory of the Reals, Ramat Gan, 1991, Israel Math. Conf. Proc., 6, Bar-Ilan Univ., Ramat Gan, 1993, 439–561 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.