Ideals which generalize (v 0)
Open Mathematics (2010)
- Volume: 8, Issue: 6, page 1016-1025
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topPiotr Kalemba, and Szymon Plewik. "Ideals which generalize (v 0)." Open Mathematics 8.6 (2010): 1016-1025. <http://eudml.org/doc/269000>.
@article{PiotrKalemba2010,
abstract = {Countable products of finite discrete spaces with more than one point and ideals generated by Marczewski-Burstin bases (assigned to trimmed trees) are examined, using machinery of base tree in the sense of B. Balcar and P. Simon. Applying Kulpa-Szymanski Theorem, we prove that the covering number equals to the additivity or the additivity plus for each of the ideals considered.},
author = {Piotr Kalemba, Szymon Plewik},
journal = {Open Mathematics},
keywords = {Base tree; Fusion relation; Trimmed tree; add (d
0(V)); cov (d
0(V)); base tree; fusion relation; trimmed tree},
language = {eng},
number = {6},
pages = {1016-1025},
title = {Ideals which generalize (v 0)},
url = {http://eudml.org/doc/269000},
volume = {8},
year = {2010},
}
TY - JOUR
AU - Piotr Kalemba
AU - Szymon Plewik
TI - Ideals which generalize (v 0)
JO - Open Mathematics
PY - 2010
VL - 8
IS - 6
SP - 1016
EP - 1025
AB - Countable products of finite discrete spaces with more than one point and ideals generated by Marczewski-Burstin bases (assigned to trimmed trees) are examined, using machinery of base tree in the sense of B. Balcar and P. Simon. Applying Kulpa-Szymanski Theorem, we prove that the covering number equals to the additivity or the additivity plus for each of the ideals considered.
LA - eng
KW - Base tree; Fusion relation; Trimmed tree; add (d
0(V)); cov (d
0(V)); base tree; fusion relation; trimmed tree
UR - http://eudml.org/doc/269000
ER -
References
top- [1] Balcar B., Pelant J., Simon P., The space of ultrafilters on ℕ covered by nowhere dense sets, Fund. Math., 1980, 110(1), 11–24 Zbl0568.54004
- [2] Balcar B., Simon P., Disjoint refinement, In: Handbook of Boolean Algebras, 2, North-Holland, Amsterdam, 1989, 333–388
- [3] Brendle J., Strolling through paradise, Fund. Math., 1995, 148(1), 1–25 Zbl0835.03010
- [4] Brown J., Elalaoui-Talibi H., Marczewski-Burstin-like characterizations of σ-algebras, ideals, and measurable functions, Colloq. Math., 1999, 82(2), 277–286 Zbl0940.28002
- [5] Ellentuck E., A new proof that analytic sets are Ramsey, J. Symbolic Logic, 1974, 39(1), 163–165 http://dx.doi.org/10.2307/2272356 Zbl0292.02054
- [6] Galvin F., Prikry K., Borel sets and Ramsey’s theorem, J. Symbolic Logic, 1973, 38(2), 193–198 http://dx.doi.org/10.2307/2272055 Zbl0276.04003
- [7] Hadamard J., Sur les caractères de convergence des séries a termes positifs et sur les fonctions indéfiniment croissantes, Acta Math., 1894, 18(1), 319–336 http://dx.doi.org/10.1007/BF02418282
- [8] Jech T., Set Theory, Springer Monogr. Math., Springer, Berlin, 2003
- [9] Kalemba P., Plewik Sz., Wojciechowska A., On the ideal (v 0), Cent. Eur. J. Math., 2008, 6(2), 218–227 http://dx.doi.org/10.2478/s11533-008-0021-0 Zbl1151.03027
- [10] Kechris A.S., Classical Descriptive Set Theory, Grad. Texts in Math., 156, Springer, New York, 1995 Zbl0819.04002
- [11] Kulpa W., Szymański A., Decomposition into nowhere dense sets, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys., 1977, 25(1), 37–39 Zbl0344.54007
- [12] Kysiak M., Nowik A., Weiss T., Special subsets of the reals and tree forcing notions, Proc. Amer. Math. Soc., 2007, 135(9), 2975–2982 http://dx.doi.org/10.1090/S0002-9939-07-08808-9 Zbl1121.03056
- [13] Matet P., A short proof of Ellentuck’s theorem, Proc. Amer. Math. Soc., 2001, 129(4), 1195–1197 http://dx.doi.org/10.1090/S0002-9939-00-05653-7 Zbl0962.03042
- [14] Moran G., Strauss D., Countable partitions of product spaces, Mathematika, 1980, 27(2), 213–224 http://dx.doi.org/10.1112/S002557930001010X Zbl0459.04001
- [15] Newelski L., Rosłanowski A., The ideal determined by the unsymmetric game, Proc. Amer. Math. Soc., 1993, 117(3), 823–831 Zbl0778.03016
- [16] Plewik Sz., On completely Ramsey sets, Fund. Math., 1987, 127(2), 127–132
- [17] Plewik Sz., Ideals of nowhere Ramsey sets are isomorphic, J. Symbolic Logic, 1994, 59(2), 662–667 http://dx.doi.org/10.2307/2275415 Zbl0809.04007
- [18] Rosłanowski A., Stepr-ans J., Chasing Silver, Canad. Math. Bull., 2008, 51(4), 593–603 http://dx.doi.org/10.4153/CMB-2008-059-2
- [19] Shelah S., Spinas O., The distributivity numbers of finite products of P(!)/ fin, Fund. Math., 1998, 158(1), 81–93 Zbl0949.03044
- [20] Scheepers M., Gaps in ωω, In: Set Theory of the Reals, Ramat Gan, 1991, Israel Math. Conf. Proc., 6, Bar-Ilan Univ., Ramat Gan, 1993, 439–561
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.