On products of Radon measures
Fundamenta Mathematicae (1999)
- Volume: 159, Issue: 1, page 71-84
- ISSN: 0016-2736
Access Full Article
topAbstract
topHow to cite
topReferences
top- [B-F] B. Balcar and F. Franek, Independent families in complete Boolean algebras, Trans. Amer. Math. Soc. 274 (1982), 607-618. Zbl0527.06008
- [Bo] N. Bourbaki, Intégration, Ch. 8, Hermann, Paris, 1959-1967.
- [C] J. R. Choksi, Recent developments arising out of Kakutani's work on completion regularity of measures, in: Contemp. Math. 26, Amer. Math. Soc., Providence, R.I., 1984, 81-94. Zbl0538.28008
- [E] B. A. Efimov, Mappings and embeddings of dyadic spaces, Mat. Sb. 103 (1977), 52-68 (in Russian).
- [Er-Ox] P. Erdős and J. C. Oxtoby, Partitions of the plane into sets having positive measure in every non-null measurable product set, Trans. Amer. Math. Soc. 79 (1955), 91-102. Zbl0066.29801
- [Fr₁] D. H. Fremlin, Products of Radon measures: a counter-example, Canad. Math. Bull. 19 (1976), 285-289. Zbl0353.28005
- [Fr₂] D. H. Fremlin, Measure Theory, University of Essex, Colchester, 1994.
- [Fr-Gr] D. H. Fremlin and S. Grekas, Products of completion regular measures, Fund. Math. 147 (1995), 27-37. Zbl0843.28005
- [Gr₁] S. Grekas, Structural properties of compact groups with measure-theoretic applications, Israel J. Math. 87 (1994), 89-95. Zbl0831.28007
- [Gr₂] S. Grekas, Measure-theoretic problems in topological dynamics, J. Anal. Math. 65 (1995), 207-220. Zbl0870.28009
- [Gr-Me] S. Grekas and S. Mercourakis, On the measure theoretic structure of compact groups, Trans. Amer. Math. Soc. 350 (1998), 2779-2796. Zbl0912.43001
- [Gry] C. Gryllakis, Products of completion regular measures, Proc. Amer. Math. Soc. 103 (1988), 563-568. Zbl0655.28005
- [H] R. Haydon, On Banach spaces which contain and types of measures on compact spaces, Israel J. Math. 28 (1977), 313-324. Zbl0365.46020
- [He-Ro] E. Hewitt and K. Ross, Abstract Harmonic Analysis I, Springer, Berlin, 1963.
- [K] V. Kuz'minov, On a hypothesis of P. S. Aleksandrov in the theory of topological groups, Dokl. Akad. Nauk SSSR 125 (1959), 727-729 (in Russian).
- [Mo-Zi] D. Montgomery and L. Zippin, Topological Transformation Groups, Interscience, 1955.
- [Mos] P. S. Mostert, Sections in principal fibre spaces, Duke Math. J. 23 (1956), 57-71. Zbl0072.18102
- [P] A. Pełczyński, Linear extensions, linear averagings, and their applications to linear topological classification of spaces of continuous functions, Dissertationes Math. 58 (1968). Zbl0165.14603
- [Pr] J. F. Price, Lie Groups and Compact Groups, Cambridge Univ. Press, 1977.
- [T₁] M. Talagrand, Pettis integral and measure theory, Mem. Amer. Math. Soc. 307 (1984). Zbl0582.46049
- DUPA[T₂] M. Talagrand, On liftings and the regularization of stochastic processes, Probab. Theory Related Fields 78 (1988), 127-134. Zbl0627.60046
- [U] V. V. Uspenskiĭ, Why compact groups are dyadic, in: General Topology and its Relations to Modern Analysis and Algebra VI, Proc. Sixth Prague Topological Symposium 1986, Z. Frolík (ed.), Heldermann, Berlin, 1988, 601-610.