Linear extensions, linear averagings, and their applications to linear topological classification of spaces of continuous functions

A. Pełczyński

  • Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1968

Abstract

top
CONTENTSIntroduction................................................................................................................................................. 5Preliminaries.............................................................................................................................................. 9§ 1. Regular operators and their products............................................................................................ 11§ 2. Exaves. Extension and averaging operators................................................................................. 15§ 3. Linear multiplicative exaves and retractions. Localization principle......................................... 21§ 4. Integral representations and compositions of linear exaves.................................................... 22§ 5. Milutin spaces..................................................................................................................................... 27§ 6. Dugundji spaces................................................................................................................................ 34§ 7. Exaves and topological groups....................................................................................................... 37§ 8. Application to linear topological classification of spaces of continuous functions............... 40§ 9. Linear averaging operators and projections onto spaces of continuous functions.............. 47Notes and Remarks.................................................................................................................................. 59Appendix: Category-theoretical approach............................................................................................. 75Bibliography................................................................................................................................................ 80

How to cite

top

A. Pełczyński. Linear extensions, linear averagings, and their applications to linear topological classification of spaces of continuous functions. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1968. <http://eudml.org/doc/268522>.

@book{A1968,
abstract = {CONTENTSIntroduction................................................................................................................................................. 5Preliminaries.............................................................................................................................................. 9§ 1. Regular operators and their products............................................................................................ 11§ 2. Exaves. Extension and averaging operators................................................................................. 15§ 3. Linear multiplicative exaves and retractions. Localization principle......................................... 21§ 4. Integral representations and compositions of linear exaves.................................................... 22§ 5. Milutin spaces..................................................................................................................................... 27§ 6. Dugundji spaces................................................................................................................................ 34§ 7. Exaves and topological groups....................................................................................................... 37§ 8. Application to linear topological classification of spaces of continuous functions............... 40§ 9. Linear averaging operators and projections onto spaces of continuous functions.............. 47Notes and Remarks.................................................................................................................................. 59Appendix: Category-theoretical approach............................................................................................. 75Bibliography................................................................................................................................................ 80},
author = {A. Pełczyński},
keywords = {functional analysis},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {Linear extensions, linear averagings, and their applications to linear topological classification of spaces of continuous functions},
url = {http://eudml.org/doc/268522},
year = {1968},
}

TY - BOOK
AU - A. Pełczyński
TI - Linear extensions, linear averagings, and their applications to linear topological classification of spaces of continuous functions
PY - 1968
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTSIntroduction................................................................................................................................................. 5Preliminaries.............................................................................................................................................. 9§ 1. Regular operators and their products............................................................................................ 11§ 2. Exaves. Extension and averaging operators................................................................................. 15§ 3. Linear multiplicative exaves and retractions. Localization principle......................................... 21§ 4. Integral representations and compositions of linear exaves.................................................... 22§ 5. Milutin spaces..................................................................................................................................... 27§ 6. Dugundji spaces................................................................................................................................ 34§ 7. Exaves and topological groups....................................................................................................... 37§ 8. Application to linear topological classification of spaces of continuous functions............... 40§ 9. Linear averaging operators and projections onto spaces of continuous functions.............. 47Notes and Remarks.................................................................................................................................. 59Appendix: Category-theoretical approach............................................................................................. 75Bibliography................................................................................................................................................ 80
LA - eng
KW - functional analysis
UR - http://eudml.org/doc/268522
ER -

Citations in EuDML Documents

top
  1. Jean Saint-Raymond, Dérivation par rapport à une application. Existence d'exaves markoviens
  2. José Blasco, C. Ivorra, On dyadic spaces and almost Milyutin spaces
  3. Claude Piquet, Opérateurs multiplicativement liés
  4. Valentin Gutev, Trivial bundles of spaces of probability measures and countable-dimensionality
  5. C. Gryllakis, S. Grekas, On products of Radon measures
  6. Jean Dhombres, Moyennes de fonctions et opérateurs multiplicativement liés
  7. Murray G. Bell, Not all dyadic spaces are supercompact
  8. Dmitriĭ B. Shakhmatov, Dugundji spaces and topological groups
  9. Andrzej Kucharski, Szymon Plewik, Vesko Valov, Skeletally Dugundji spaces
  10. Leon Brown, Bertram Schreiber, Stochastic continuity and approximation

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.