Dynamical boundary of a self-similar set
Fundamenta Mathematicae (1999)
- Volume: 160, Issue: 1, page 1-14
- ISSN: 0016-2736
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] C. Bandt and S. Graff, Self-similar sets 7. A characterization of self-similar fractals with positive Hausdorff dimension, Proc. Amer. Math. Soc. 114 (1992), 995-1001. Zbl0823.28003
- [2] J. K. Falconer, Fractal Geometry, Wiley, Chichester, 1990.
- [3] J. K. Falconer, Sub-self-similar sets, Trans. Amer. Math. Soc. 347 (1995), 3121-3129. Zbl0844.28005
- [4] J. Feder, Fractals, Plenum Press, New York, 1988.
- [5] J. E. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J. 30 (1981), 713-747. Zbl0598.28011
- [6] T. Lindstrøm, Brownian motion on nested fractals, Mem. Amer. Math. Soc. 420 (1990). Zbl0688.60065
- [7] J. Kigami and M. Lapidus, Weyl's problem for the spectral distribution of Laplacians on P.C.F. self-similar sets, Commun. Math. Phys. 158 (1993), 93-125. Zbl0806.35130
- [8] B. Mandelbrot, The Fractal Geometry of Nature, Freeman, San Francisco, 1977.
- [9] P. Mattila, Geometry of Sets and Measures in Euclidean Spaces, Cambridge Univ. Press, 1995. Zbl0819.28004
- [10] M. Morán, Multifractal components of multiplicative functions, preprint. Zbl0998.28007
- [11] M. Morán and J. M. Rey, Singularity of self-similar measures with respect to Hausdorff measures, Trans. Amer. Math. Soc. 350 (1998), 2297-2310. Zbl0899.28002
- [12] M. Morán and J. M. Rey, Geometry of self-similar measures, Ann. Acad. Sci. Fenn. Math. 22 (1997), 365-386. Zbl0890.28005
- [13] P. A. P. Moran, Additive functions of intervals and Hausdorff measures, Proc. Cambridge Philos. Soc. 42 (1946), 15-23. Zbl0063.04088
- [14] A. Schief, Separation properties for self-similar sets, Proc. Amer. Math. Soc. 122 (1994), 111-115. Zbl0807.28005
- [15] A. Schief, Self-similar sets in complete metric spaces, ibid. 121 (1996), 481-489. Zbl0844.28004
- [16] S. Stella, On Hausdorff dimension of recurrent net fractals, ibid. 116 (1992), 389-400. Zbl0769.28007
- [17] C. Tricot, Two definitions of fractal dimension, Math. Proc. Cambridge Philos. Soc. 91 (1982), 57-74.