Mesures invariantes pour les fractions rationnelles géométriquement finies

Guillaume Havard

Fundamenta Mathematicae (1999)

  • Volume: 160, Issue: 1, page 39-61
  • ISSN: 0016-2736


Let T be a geometrically finite rational map, p(T) its petal number and δ the Hausdorff dimension of its Julia set. We give a construction of the σ-finite and T-invariant measure equivalent to the δ-conformal measure. We prove that this measure is finite if and only if p ( T ) + 1 p ( T ) δ > 2 . Under this assumption and if T is parabolic, we prove that the only equilibrium states are convex combinations of the T-invariant probability and δ-masses at parabolic cycles.

How to cite


Havard, Guillaume. "Mesures invariantes pour les fractions rationnelles géométriquement finies." Fundamenta Mathematicae 160.1 (1999): 39-61. <>.

author = {Havard, Guillaume},
journal = {Fundamenta Mathematicae},
keywords = {Hausdorff dimension; parabolic cycles; Julia set},
language = {fre},
number = {1},
pages = {39-61},
title = {Mesures invariantes pour les fractions rationnelles géométriquement finies},
url = {},
volume = {160},
year = {1999},

AU - Havard, Guillaume
TI - Mesures invariantes pour les fractions rationnelles géométriquement finies
JO - Fundamenta Mathematicae
PY - 1999
VL - 160
IS - 1
SP - 39
EP - 61
LA - fre
KW - Hausdorff dimension; parabolic cycles; Julia set
UR -
ER -


  1. [Aa,De,Ur] J. Aaronson, M. Denker and M. Urbański, Ergodic theory for Markov fibred systems and parabolic rational maps, Trans. Amer. Math. Soc. 337 (1993), 495-548. Zbl0789.28010
  2. [Bo,Zi] O. Bodart et M. Zinsmeister, Quelques résultats sur la dimension de Hausdorff des ensembles de Julia des polynômes quadratiques, Fund. Math. 151 (1996), 121-137. 
  3. [Bow] R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Lecture Notes in Math. 470, Springer, 1975. Zbl0308.28010
  4. [Bow] M. Denker and M. Urbański, Hausdorff and conformal measures on Julia sets with a rationally indifferent periodic point, J. London Math. Soc. 43 (1991), 107-118. Zbl0734.28007
  5. [De,Ur1] M. Denker and M. Urbański, Absolutely continuous invariant measures for expansive rational maps with rationally indifferent periodic points, Forum Math. 3 (1991), 561-579. Zbl0745.28008
  6. [Fo] S. Foguel, The Ergodic Theory of Markov Processes, Van Nostrand, 1969. 
  7. [Mc,Mu1] C. McMullen, Hausdorff dimension and conformal dynamics 2: Geometrically finite rational maps, preprint, 1997. 
  8. [Mc,Mu2] C. McMullen, Hausdorff dimension and conformal dynamics 3: Computation of dimension, preprint, 1997. 
  9. [Mi] J. Milnor, Dynamics in One Complex Variable: Introductory Lectures, Sto-ny Brook IMS preprint, 1990. 
  10. [Po] C. Pommerenke, Boundary Behaviour of Conformal Maps, Springer, 1992. Zbl0762.30001
  11. [Pr,Ur] F. Przytycki and M. Urbański, Fractals in the complex plane-ergodic theory methods, to appear. 
  12. [Ru1] D. Ruelle, Thermodynamic Formalism, Addison-Wesley, 1978. 
  13. [Ru2] D. Ruelle, Repellers for real analytic maps, Ergodic Theory Dynam. Systems 2 (1982), 99-107. 
  14. [Sm] S. Smirnov, Spectral analysis of Julia sets, thesis, California Institute of Technology, 1996. 
  15. [Su] D. Sullivan, Conformal dynamical systems, in: Geometric Dynamics, Lecture Notes in Math. 1007, Springer, 1983, 725-752. 
  16. [Ur1] M. Urbański, Rational functions with no recurrent critical points, Ergodic Theory Dynam. Systems 14 (1994), 391-414. Zbl0807.58025
  17. [Ur2] M. Urbański, Geometry and ergodic theory of conformal non-recurrent dynamics, ibid. 17 (1997), 1449-1476. Zbl0894.58036
  18. [Wa1] P. Walters, A variational principle for the pressure of continuous transformations, Amer. J. Math. 97 (1976), 937-971. Zbl0318.28007
  19. [Wa2] P. Walters, An Introduction to Ergodic Theory, Springer, 1982. 

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.