Mesures invariantes pour les fractions rationnelles géométriquement finies

Guillaume Havard

Fundamenta Mathematicae (1999)

  • Volume: 160, Issue: 1, page 39-61
  • ISSN: 0016-2736

Abstract

top
Let T be a geometrically finite rational map, p(T) its petal number and δ the Hausdorff dimension of its Julia set. We give a construction of the σ-finite and T-invariant measure equivalent to the δ-conformal measure. We prove that this measure is finite if and only if p ( T ) + 1 p ( T ) δ > 2 . Under this assumption and if T is parabolic, we prove that the only equilibrium states are convex combinations of the T-invariant probability and δ-masses at parabolic cycles.

How to cite

top

Havard, Guillaume. "Mesures invariantes pour les fractions rationnelles géométriquement finies." Fundamenta Mathematicae 160.1 (1999): 39-61. <http://eudml.org/doc/212380>.

@article{Havard1999,
author = {Havard, Guillaume},
journal = {Fundamenta Mathematicae},
keywords = {Hausdorff dimension; parabolic cycles; Julia set},
language = {fre},
number = {1},
pages = {39-61},
title = {Mesures invariantes pour les fractions rationnelles géométriquement finies},
url = {http://eudml.org/doc/212380},
volume = {160},
year = {1999},
}

TY - JOUR
AU - Havard, Guillaume
TI - Mesures invariantes pour les fractions rationnelles géométriquement finies
JO - Fundamenta Mathematicae
PY - 1999
VL - 160
IS - 1
SP - 39
EP - 61
LA - fre
KW - Hausdorff dimension; parabolic cycles; Julia set
UR - http://eudml.org/doc/212380
ER -

References

top
  1. [Aa,De,Ur] J. Aaronson, M. Denker and M. Urbański, Ergodic theory for Markov fibred systems and parabolic rational maps, Trans. Amer. Math. Soc. 337 (1993), 495-548. Zbl0789.28010
  2. [Bo,Zi] O. Bodart et M. Zinsmeister, Quelques résultats sur la dimension de Hausdorff des ensembles de Julia des polynômes quadratiques, Fund. Math. 151 (1996), 121-137. 
  3. [Bow] R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Lecture Notes in Math. 470, Springer, 1975. Zbl0308.28010
  4. [Bow] M. Denker and M. Urbański, Hausdorff and conformal measures on Julia sets with a rationally indifferent periodic point, J. London Math. Soc. 43 (1991), 107-118. Zbl0734.28007
  5. [De,Ur1] M. Denker and M. Urbański, Absolutely continuous invariant measures for expansive rational maps with rationally indifferent periodic points, Forum Math. 3 (1991), 561-579. Zbl0745.28008
  6. [Fo] S. Foguel, The Ergodic Theory of Markov Processes, Van Nostrand, 1969. 
  7. [Mc,Mu1] C. McMullen, Hausdorff dimension and conformal dynamics 2: Geometrically finite rational maps, preprint, 1997. 
  8. [Mc,Mu2] C. McMullen, Hausdorff dimension and conformal dynamics 3: Computation of dimension, preprint, 1997. 
  9. [Mi] J. Milnor, Dynamics in One Complex Variable: Introductory Lectures, Sto-ny Brook IMS preprint, 1990. 
  10. [Po] C. Pommerenke, Boundary Behaviour of Conformal Maps, Springer, 1992. Zbl0762.30001
  11. [Pr,Ur] F. Przytycki and M. Urbański, Fractals in the complex plane-ergodic theory methods, to appear. 
  12. [Ru1] D. Ruelle, Thermodynamic Formalism, Addison-Wesley, 1978. 
  13. [Ru2] D. Ruelle, Repellers for real analytic maps, Ergodic Theory Dynam. Systems 2 (1982), 99-107. 
  14. [Sm] S. Smirnov, Spectral analysis of Julia sets, thesis, California Institute of Technology, 1996. 
  15. [Su] D. Sullivan, Conformal dynamical systems, in: Geometric Dynamics, Lecture Notes in Math. 1007, Springer, 1983, 725-752. 
  16. [Ur1] M. Urbański, Rational functions with no recurrent critical points, Ergodic Theory Dynam. Systems 14 (1994), 391-414. Zbl0807.58025
  17. [Ur2] M. Urbański, Geometry and ergodic theory of conformal non-recurrent dynamics, ibid. 17 (1997), 1449-1476. Zbl0894.58036
  18. [Wa1] P. Walters, A variational principle for the pressure of continuous transformations, Amer. J. Math. 97 (1976), 937-971. Zbl0318.28007
  19. [Wa2] P. Walters, An Introduction to Ergodic Theory, Springer, 1982. 

NotesEmbed ?

top

You must be logged in to post comments.