Mesures invariantes pour les fractions rationnelles géométriquement finies
Fundamenta Mathematicae (1999)
- Volume: 160, Issue: 1, page 39-61
- ISSN: 0016-2736
Access Full Article
topAbstract
topHow to cite
topHavard, Guillaume. "Mesures invariantes pour les fractions rationnelles géométriquement finies." Fundamenta Mathematicae 160.1 (1999): 39-61. <http://eudml.org/doc/212380>.
@article{Havard1999,
	author = {Havard, Guillaume},
	journal = {Fundamenta Mathematicae},
	keywords = {Hausdorff dimension; parabolic cycles; Julia set},
	language = {fre},
	number = {1},
	pages = {39-61},
	title = {Mesures invariantes pour les fractions rationnelles géométriquement finies},
	url = {http://eudml.org/doc/212380},
	volume = {160},
	year = {1999},
}
TY  - JOUR
AU  - Havard, Guillaume
TI  - Mesures invariantes pour les fractions rationnelles géométriquement finies
JO  - Fundamenta Mathematicae
PY  - 1999
VL  - 160
IS  - 1
SP  - 39
EP  - 61
LA  - fre
KW  - Hausdorff dimension; parabolic cycles; Julia set
UR  - http://eudml.org/doc/212380
ER  - 
References
top- [Aa,De,Ur] J. Aaronson, M. Denker and M. Urbański, Ergodic theory for Markov fibred systems and parabolic rational maps, Trans. Amer. Math. Soc. 337 (1993), 495-548. Zbl0789.28010
- [Bo,Zi] O. Bodart et M. Zinsmeister, Quelques résultats sur la dimension de Hausdorff des ensembles de Julia des polynômes quadratiques, Fund. Math. 151 (1996), 121-137.
- [Bow] R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Lecture Notes in Math. 470, Springer, 1975. Zbl0308.28010
- [Bow] M. Denker and M. Urbański, Hausdorff and conformal measures on Julia sets with a rationally indifferent periodic point, J. London Math. Soc. 43 (1991), 107-118. Zbl0734.28007
- [De,Ur1] M. Denker and M. Urbański, Absolutely continuous invariant measures for expansive rational maps with rationally indifferent periodic points, Forum Math. 3 (1991), 561-579. Zbl0745.28008
- [Fo] S. Foguel, The Ergodic Theory of Markov Processes, Van Nostrand, 1969.
- [Mc,Mu1] C. McMullen, Hausdorff dimension and conformal dynamics 2: Geometrically finite rational maps, preprint, 1997.
- [Mc,Mu2] C. McMullen, Hausdorff dimension and conformal dynamics 3: Computation of dimension, preprint, 1997.
- [Mi] J. Milnor, Dynamics in One Complex Variable: Introductory Lectures, Sto-ny Brook IMS preprint, 1990.
- [Po] C. Pommerenke, Boundary Behaviour of Conformal Maps, Springer, 1992. Zbl0762.30001
- [Pr,Ur] F. Przytycki and M. Urbański, Fractals in the complex plane-ergodic theory methods, to appear.
- [Ru1] D. Ruelle, Thermodynamic Formalism, Addison-Wesley, 1978.
- [Ru2] D. Ruelle, Repellers for real analytic maps, Ergodic Theory Dynam. Systems 2 (1982), 99-107.
- [Sm] S. Smirnov, Spectral analysis of Julia sets, thesis, California Institute of Technology, 1996.
- [Su] D. Sullivan, Conformal dynamical systems, in: Geometric Dynamics, Lecture Notes in Math. 1007, Springer, 1983, 725-752.
- [Ur1] M. Urbański, Rational functions with no recurrent critical points, Ergodic Theory Dynam. Systems 14 (1994), 391-414. Zbl0807.58025
- [Ur2] M. Urbański, Geometry and ergodic theory of conformal non-recurrent dynamics, ibid. 17 (1997), 1449-1476. Zbl0894.58036
- [Wa1] P. Walters, A variational principle for the pressure of continuous transformations, Amer. J. Math. 97 (1976), 937-971. Zbl0318.28007
- [Wa2] P. Walters, An Introduction to Ergodic Theory, Springer, 1982.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.
 
 