Quelques résultats sur la dimension de Hausdorff des ensembles de Julia des polynômes quadratiques
Olivier Bodart; Michel Zinsmeister
Fundamenta Mathematicae (1996)
- Volume: 151, Issue: 2, page 121-137
- ISSN: 0016-2736
Access Full Article
topAbstract
topHow to cite
topBodart, Olivier, and Zinsmeister, Michel. "Quelques résultats sur la dimension de Hausdorff des ensembles de Julia des polynômes quadratiques." Fundamenta Mathematicae 151.2 (1996): 121-137. <http://eudml.org/doc/212185>.
@article{Bodart1996,
author = {Bodart, Olivier, Zinsmeister, Michel},
journal = {Fundamenta Mathematicae},
keywords = {Hausdorff dimension; Julia set; thermodynamical formalism; Monte Carlo process},
language = {fre},
number = {2},
pages = {121-137},
title = {Quelques résultats sur la dimension de Hausdorff des ensembles de Julia des polynômes quadratiques},
url = {http://eudml.org/doc/212185},
volume = {151},
year = {1996},
}
TY - JOUR
AU - Bodart, Olivier
AU - Zinsmeister, Michel
TI - Quelques résultats sur la dimension de Hausdorff des ensembles de Julia des polynômes quadratiques
JO - Fundamenta Mathematicae
PY - 1996
VL - 151
IS - 2
SP - 121
EP - 137
LA - fre
KW - Hausdorff dimension; Julia set; thermodynamical formalism; Monte Carlo process
UR - http://eudml.org/doc/212185
ER -
References
top- [1] J. Aaronson, M. Denker and M. Urbański, Ergodic theory for Markov fibered systems and parabolic rationnal maps, Trans. Amer. Math. Soc. 337 (1993), 495-548. Zbl0789.28010
- [2] N. Bouleau and D. Lépingle, Numerical Methods for Stochastic Processes, Wiley, 1994.
- [3] R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Lecture Notes in Math. 470, Springer, 1975. Zbl0308.28010
- [4] M. Denker and M. Urbański, Hausdorff and conformal measures on Julia sets with a rationally indifferent fixed point, J. London Math. Soc. (2) 43 (1991), 107-118. Zbl0734.28007
- [5] M. Denker and M. Urbański, Absolutely continuous invariant measures for expansive rational maps with rationally indifferent fixed points, Forum Math. 3 (1991), 561-579. Zbl0745.28008
- [6] A. Douady et J. Hubbard, Etude dynamique des polynômes complexes I, II, Publ. Math. d'Orsay 84-02, 85-04.
- [7] L. Garnett, A computer algorithm for determining the Hausdorff dimension of certain fractals, Math. Comp. 51 (1988), 291-300. Zbl0651.58030
- [8] T. Ransford, Variation of Hausdorff dimension of Julia sets, Ergodic Theory Dynam. Systems 13 (1993), 167-174. Zbl0788.58035
- [9] M. Reed and B. Simon, Methods of Modern Mathematical Physics, tome IV, Academic Press, 1978.
- [10] D. Ruelle, Repellers for real analytic maps, Ergodic Theory Dynam. Systems 2 (1982), 99-108. Zbl0506.58024
- [11] M. Shishikura, The boundary of the Mandelbrot set has Hausdorff dimension two, in: Complex Analytic Methods in Dynamical Systems, Astérisque 222 (1994), 389-405. Zbl0813.58047
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.