Quelques résultats sur la dimension de Hausdorff des ensembles de Julia des polynômes quadratiques

Olivier Bodart; Michel Zinsmeister

Fundamenta Mathematicae (1996)

  • Volume: 151, Issue: 2, page 121-137
  • ISSN: 0016-2736

Abstract

top
This paper deals with the Hausdorff dimension of the Julia set of quadratic polynomials. It is divided in two parts. The first aims to compute good numerical approximations of the dimension for hyperbolic points. For such points, Ruelle’s thermodynamical formalism applies, hence computing the dimension amounts to computing the zero point of a pressure function. It is this pressure function that we approximate by a Monte-Carlo process combined with a shift method that considerably decreases the computational cost. The second part is a continuity result of the dimension on the real axis at the parabolic point 1/4 for P c ( z ) = z 2 + c .

How to cite

top

Bodart, Olivier, and Zinsmeister, Michel. "Quelques résultats sur la dimension de Hausdorff des ensembles de Julia des polynômes quadratiques." Fundamenta Mathematicae 151.2 (1996): 121-137. <http://eudml.org/doc/212185>.

@article{Bodart1996,
author = {Bodart, Olivier, Zinsmeister, Michel},
journal = {Fundamenta Mathematicae},
keywords = {Hausdorff dimension; Julia set; thermodynamical formalism; Monte Carlo process},
language = {fre},
number = {2},
pages = {121-137},
title = {Quelques résultats sur la dimension de Hausdorff des ensembles de Julia des polynômes quadratiques},
url = {http://eudml.org/doc/212185},
volume = {151},
year = {1996},
}

TY - JOUR
AU - Bodart, Olivier
AU - Zinsmeister, Michel
TI - Quelques résultats sur la dimension de Hausdorff des ensembles de Julia des polynômes quadratiques
JO - Fundamenta Mathematicae
PY - 1996
VL - 151
IS - 2
SP - 121
EP - 137
LA - fre
KW - Hausdorff dimension; Julia set; thermodynamical formalism; Monte Carlo process
UR - http://eudml.org/doc/212185
ER -

References

top
  1. [1] J. Aaronson, M. Denker and M. Urbański, Ergodic theory for Markov fibered systems and parabolic rationnal maps, Trans. Amer. Math. Soc. 337 (1993), 495-548. Zbl0789.28010
  2. [2] N. Bouleau and D. Lépingle, Numerical Methods for Stochastic Processes, Wiley, 1994. 
  3. [3] R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Lecture Notes in Math. 470, Springer, 1975. Zbl0308.28010
  4. [4] M. Denker and M. Urbański, Hausdorff and conformal measures on Julia sets with a rationally indifferent fixed point, J. London Math. Soc. (2) 43 (1991), 107-118. Zbl0734.28007
  5. [5] M. Denker and M. Urbański, Absolutely continuous invariant measures for expansive rational maps with rationally indifferent fixed points, Forum Math. 3 (1991), 561-579. Zbl0745.28008
  6. [6] A. Douady et J. Hubbard, Etude dynamique des polynômes complexes I, II, Publ. Math. d'Orsay 84-02, 85-04. 
  7. [7] L. Garnett, A computer algorithm for determining the Hausdorff dimension of certain fractals, Math. Comp. 51 (1988), 291-300. Zbl0651.58030
  8. [8] T. Ransford, Variation of Hausdorff dimension of Julia sets, Ergodic Theory Dynam. Systems 13 (1993), 167-174. Zbl0788.58035
  9. [9] M. Reed and B. Simon, Methods of Modern Mathematical Physics, tome IV, Academic Press, 1978. 
  10. [10] D. Ruelle, Repellers for real analytic maps, Ergodic Theory Dynam. Systems 2 (1982), 99-108. Zbl0506.58024
  11. [11] M. Shishikura, The boundary of the Mandelbrot set has Hausdorff dimension two, in: Complex Analytic Methods in Dynamical Systems, Astérisque 222 (1994), 389-405. Zbl0813.58047

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.