Postnikov invariants of H-spaces
Dominique Arlettaz; Nicole Pointet-Tischler
Fundamenta Mathematicae (1999)
- Volume: 161, Issue: 1-2, page 17-35
- ISSN: 0016-2736
Access Full Article
topAbstract
topHow to cite
topArlettaz, Dominique, and Pointet-Tischler, Nicole. "Postnikov invariants of H-spaces." Fundamenta Mathematicae 161.1-2 (1999): 17-35. <http://eudml.org/doc/212399>.
@article{Arlettaz1999,
abstract = {It is known that the order of all Postnikov k-invariants of an H-space of finite type is finite. This paper establishes the finiteness of the order of the k-invariants $k^\{m+1\}(X)$ of X in dimensions m ≤ 2n if X is an (n-1)-connected H-space which is not necessarily of finite type (n ≥ 1). Similar results hold more generally for higher k-invariants if X is an iterated loop space. Moreover, we provide in all cases explicit universal upper bounds for the order of the k-invariants of X.},
author = {Arlettaz, Dominique, Pointet-Tischler, Nicole},
journal = {Fundamenta Mathematicae},
keywords = {iterated loop spaces; Hurewicz homomorphism; -invariants},
language = {eng},
number = {1-2},
pages = {17-35},
title = {Postnikov invariants of H-spaces},
url = {http://eudml.org/doc/212399},
volume = {161},
year = {1999},
}
TY - JOUR
AU - Arlettaz, Dominique
AU - Pointet-Tischler, Nicole
TI - Postnikov invariants of H-spaces
JO - Fundamenta Mathematicae
PY - 1999
VL - 161
IS - 1-2
SP - 17
EP - 35
AB - It is known that the order of all Postnikov k-invariants of an H-space of finite type is finite. This paper establishes the finiteness of the order of the k-invariants $k^{m+1}(X)$ of X in dimensions m ≤ 2n if X is an (n-1)-connected H-space which is not necessarily of finite type (n ≥ 1). Similar results hold more generally for higher k-invariants if X is an iterated loop space. Moreover, we provide in all cases explicit universal upper bounds for the order of the k-invariants of X.
LA - eng
KW - iterated loop spaces; Hurewicz homomorphism; -invariants
UR - http://eudml.org/doc/212399
ER -
References
top- [AC] M. Arkowitz and C. Curjel, The Hurewicz homomorphism and finite homotopy invariants, Trans. Amer. Math. Soc. 110 (1964), 538-551. Zbl0132.19203
- [A1] D. Arlettaz, On the homology of the special linear group over a number field, Comment. Math. Helv. 61 (1986), 556-564. Zbl0621.20028
- [A2] D. Arlettaz, On the k-invariants of iterated loop spaces, Proc. Roy. Soc. Edinburgh Sect. A 110 (1988), 343-350. Zbl0665.55012
- [A3] D. Arlettaz, The first k-invariant of a double loop space is trivial, Arch. Math. (Basel) 54 (1990), 84-92. Zbl0672.55010
- [A4] D. Arlettaz, Universal bounds for the exponent of stable homotopy groups, Topology Appl. 38 (1991), 255-261. Zbl0718.55010
- [A5] D. Arlettaz, Exponents for extraordinary homology groups, Comment. Math. Helv. 68 (1993), 653-672. Zbl0968.55003
- [C] H. Cartan, Algèbres d'Eilenberg-MacLane et homotopie, Séminaire H. Cartan Ecole Norm. Sup. (1954/1955), exp. 11; see also: Oeuvres, Vol. III, Springer, 1979, 1374-1394.
- [J] I. M. James, Reduced product spaces, Ann. of Math. (2) 62 (1955), 170-197.
- [P1] N. Pointet-Tischler, Invariants de Postnikov des espaces de lacets, thèse, Université de Lausanne, 1996.
- [P2] N. Pointet-Tischler, La suspension cohomologique des espaces d'Eilenberg-MacLane, C. R. Acad. Sci. Paris Sér. I 325 (1997), 1113-1116. Zbl0897.55007
- [Sm] L. Smith, On the relation between spherical and primitive homology classes in topological groups, Topology 8 (1969), 69-88.
- [So] C. Soulé, Opérations en K-théorie algébrique, Canad. J. Math. 37 (1985), 488-550. Zbl0575.14015
- [T] R. Thom, L'homologie des espaces fonctionnels, in: Colloque de topologie algébrique (Louvain, 1956), Masson, 1957, 29-39.
- [WG1] G. Whitehead, On spaces with vanishing low-dimensional homotopy groups, Proc. Nat. Acad. Sci. U.S.A. 34 (1948), 207-211. Zbl0031.28601
- [WG2] G. Whitehead, Elements of Homotopy Theory, Grad. Texts in Math. 61, Springer, 1978.
- [WH] J. H. C. Whitehead, A certain exact sequence, Ann. of Math. (2) 52 (1950), 51-110.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.