Postnikov invariants of H-spaces

Dominique Arlettaz; Nicole Pointet-Tischler

Fundamenta Mathematicae (1999)

  • Volume: 161, Issue: 1-2, page 17-35
  • ISSN: 0016-2736

Abstract

top
It is known that the order of all Postnikov k-invariants of an H-space of finite type is finite. This paper establishes the finiteness of the order of the k-invariants k m + 1 ( X ) of X in dimensions m ≤ 2n if X is an (n-1)-connected H-space which is not necessarily of finite type (n ≥ 1). Similar results hold more generally for higher k-invariants if X is an iterated loop space. Moreover, we provide in all cases explicit universal upper bounds for the order of the k-invariants of X.

How to cite

top

Arlettaz, Dominique, and Pointet-Tischler, Nicole. "Postnikov invariants of H-spaces." Fundamenta Mathematicae 161.1-2 (1999): 17-35. <http://eudml.org/doc/212399>.

@article{Arlettaz1999,
abstract = {It is known that the order of all Postnikov k-invariants of an H-space of finite type is finite. This paper establishes the finiteness of the order of the k-invariants $k^\{m+1\}(X)$ of X in dimensions m ≤ 2n if X is an (n-1)-connected H-space which is not necessarily of finite type (n ≥ 1). Similar results hold more generally for higher k-invariants if X is an iterated loop space. Moreover, we provide in all cases explicit universal upper bounds for the order of the k-invariants of X.},
author = {Arlettaz, Dominique, Pointet-Tischler, Nicole},
journal = {Fundamenta Mathematicae},
keywords = {iterated loop spaces; Hurewicz homomorphism; -invariants},
language = {eng},
number = {1-2},
pages = {17-35},
title = {Postnikov invariants of H-spaces},
url = {http://eudml.org/doc/212399},
volume = {161},
year = {1999},
}

TY - JOUR
AU - Arlettaz, Dominique
AU - Pointet-Tischler, Nicole
TI - Postnikov invariants of H-spaces
JO - Fundamenta Mathematicae
PY - 1999
VL - 161
IS - 1-2
SP - 17
EP - 35
AB - It is known that the order of all Postnikov k-invariants of an H-space of finite type is finite. This paper establishes the finiteness of the order of the k-invariants $k^{m+1}(X)$ of X in dimensions m ≤ 2n if X is an (n-1)-connected H-space which is not necessarily of finite type (n ≥ 1). Similar results hold more generally for higher k-invariants if X is an iterated loop space. Moreover, we provide in all cases explicit universal upper bounds for the order of the k-invariants of X.
LA - eng
KW - iterated loop spaces; Hurewicz homomorphism; -invariants
UR - http://eudml.org/doc/212399
ER -

References

top
  1. [AC] M. Arkowitz and C. Curjel, The Hurewicz homomorphism and finite homotopy invariants, Trans. Amer. Math. Soc. 110 (1964), 538-551. Zbl0132.19203
  2. [A1] D. Arlettaz, On the homology of the special linear group over a number field, Comment. Math. Helv. 61 (1986), 556-564. Zbl0621.20028
  3. [A2] D. Arlettaz, On the k-invariants of iterated loop spaces, Proc. Roy. Soc. Edinburgh Sect. A 110 (1988), 343-350. Zbl0665.55012
  4. [A3] D. Arlettaz, The first k-invariant of a double loop space is trivial, Arch. Math. (Basel) 54 (1990), 84-92. Zbl0672.55010
  5. [A4] D. Arlettaz, Universal bounds for the exponent of stable homotopy groups, Topology Appl. 38 (1991), 255-261. Zbl0718.55010
  6. [A5] D. Arlettaz, Exponents for extraordinary homology groups, Comment. Math. Helv. 68 (1993), 653-672. Zbl0968.55003
  7. [C] H. Cartan, Algèbres d'Eilenberg-MacLane et homotopie, Séminaire H. Cartan Ecole Norm. Sup. (1954/1955), exp. 11; see also: Oeuvres, Vol. III, Springer, 1979, 1374-1394. 
  8. [J] I. M. James, Reduced product spaces, Ann. of Math. (2) 62 (1955), 170-197. 
  9. [P1] N. Pointet-Tischler, Invariants de Postnikov des espaces de lacets, thèse, Université de Lausanne, 1996. 
  10. [P2] N. Pointet-Tischler, La suspension cohomologique des espaces d'Eilenberg-MacLane, C. R. Acad. Sci. Paris Sér. I 325 (1997), 1113-1116. Zbl0897.55007
  11. [Sm] L. Smith, On the relation between spherical and primitive homology classes in topological groups, Topology 8 (1969), 69-88. 
  12. [So] C. Soulé, Opérations en K-théorie algébrique, Canad. J. Math. 37 (1985), 488-550. Zbl0575.14015
  13. [T] R. Thom, L'homologie des espaces fonctionnels, in: Colloque de topologie algébrique (Louvain, 1956), Masson, 1957, 29-39. 
  14. [WG1] G. Whitehead, On spaces with vanishing low-dimensional homotopy groups, Proc. Nat. Acad. Sci. U.S.A. 34 (1948), 207-211. Zbl0031.28601
  15. [WG2] G. Whitehead, Elements of Homotopy Theory, Grad. Texts in Math. 61, Springer, 1978. 
  16. [WH] J. H. C. Whitehead, A certain exact sequence, Ann. of Math. (2) 52 (1950), 51-110. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.