The normalizer splitting conjecture for p-compact groups

Kasper Andersen

Fundamenta Mathematicae (1999)

  • Volume: 161, Issue: 1-2, page 1-16
  • ISSN: 0016-2736

Abstract

top
Let X be a p-compact group, with maximal torus BT → BX, maximal torus normalizer BN and Weyl group W X . We prove that for an odd prime p, the fibration B T B N B W X has a section, which is unique up to vertical homotopy.

How to cite

top

Andersen, Kasper. "The normalizer splitting conjecture for p-compact groups." Fundamenta Mathematicae 161.1-2 (1999): 1-16. <http://eudml.org/doc/212400>.

@article{Andersen1999,
abstract = {Let X be a p-compact group, with maximal torus BT → BX, maximal torus normalizer BN and Weyl group $W_X$. We prove that for an odd prime p, the fibration $BT → BN → BW_X$ has a section, which is unique up to vertical homotopy.},
author = {Andersen, Kasper},
journal = {Fundamenta Mathematicae},
keywords = {p-compact groups; normalizers of maximal tori; Weyl groups; cohomology of pseudoreflection groups},
language = {eng},
number = {1-2},
pages = {1-16},
title = {The normalizer splitting conjecture for p-compact groups},
url = {http://eudml.org/doc/212400},
volume = {161},
year = {1999},
}

TY - JOUR
AU - Andersen, Kasper
TI - The normalizer splitting conjecture for p-compact groups
JO - Fundamenta Mathematicae
PY - 1999
VL - 161
IS - 1-2
SP - 1
EP - 16
AB - Let X be a p-compact group, with maximal torus BT → BX, maximal torus normalizer BN and Weyl group $W_X$. We prove that for an odd prime p, the fibration $BT → BN → BW_X$ has a section, which is unique up to vertical homotopy.
LA - eng
KW - p-compact groups; normalizers of maximal tori; Weyl groups; cohomology of pseudoreflection groups
UR - http://eudml.org/doc/212400
ER -

References

top
  1. [1] J. Aguadé, Constructing modular classifying spaces, Israel J. Math. 66 (1989), 23-40. Zbl0697.55002
  2. [2] D. J. Benson, Projective modules for the group of twenty-seven lines on a cubic surface, Comm. Algebra 17 (1989), 1017-1068. Zbl0678.20003
  3. [3] D. J. Benson, Polynomial Invariants of Finite Groups, London Math. Soc. Lecture Note Ser. 190, Cambridge Univ. Press, Cambridge, 1993. Zbl0864.13001
  4. [4] A. K. Bousfield and D. M. Kan, Homotopy Limits, Completions and Localizations, Lecture Notes in Math. 304, Springer, Berlin, 1987. Zbl0259.55004
  5. [5] C. Broto and A. Viruel, Homotopy uniqueness of BPU(3), in: Group Representations: Cohomology, Group Actions and Topology (Seattle, WA, 1996), Proc. Sympos. Pure Math. 63, Amer. Math. Soc., Providence, RI, 1998, 85-93. Zbl0998.55008
  6. [6] K. S. Brown, Cohomology of Groups, Grad. Texts in Math. 87, Springer, New York, 1994. 
  7. [7] J. Cannon and C. Playoust, An introduction to Magma, technical report, School of Math. and Statist., Univ. of Sydney, 1995. 
  8. [8] A. Clark and J. R. Ewing, The realization of polynomial algebras as cohomology rings, Pacific J. Math. 50 (1974), 425-434. Zbl0333.55002
  9. [9] A. M. Cohen, Finite complex reflection groups, Ann. Sci. École Norm. Sup. (4) 9 (1976), 379-436. Zbl0359.20029
  10. [10] H. M. S. Coxeter, Discrete groups generated by reflections, Ann. of Math. 35 (1934), 588-621. Zbl0010.01101
  11. [11] C. W. Curtis and I. Reiner, Methods of Representation Theory, Vol. I, Wiley, New York, 1990. 
  12. [12] M. Curtis, A. Wiederhold and B. Williams, Normalizers of maximal tori, in: P. Hilton (ed.), Localization in Group Theory and Homotopy Theory and Related Topics (Seattle, WA, 1974), Lecture Notes in Math. 418, Springer, Berlin, 1974, 31-47. Zbl0301.22007
  13. [13] W. G. Dwyer and C. W. Wilkerson, Homotopy fixed-point methods for Lie groups and finite loop spaces, Ann. of Math. (2) 139 (1994), 395-442. Zbl0801.55007
  14. [14] W. G. Dwyer and C. W. Wilkerson, The center of a p-compact group, in: M. Cenkl and H. Miller (eds.), The Čech Centennial (Boston, MA, 1993), Contemp. Math. 181, Amer. Math. Soc., Providence, RI, 1995, 119-157. Zbl0828.55009
  15. [15] W. G. Dwyer and C. W. Wilkerson, Product splittings for p-compact groups, Fund. Math. 147 (1995), 279-300. Zbl0847.55005
  16. [16] L. Evens, The Cohomology of Groups, Oxford Univ. Press, New York, 1991. 
  17. [17] R. B. Howlett, On the Schur multipliers of Coxeter groups, J. London Math. Soc. (2) 38 (1988), 263-276. Zbl0627.20019
  18. [18] J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge Stud. Adv. Math. 29, Cambridge Univ. Press, Cambridge, 1992. Zbl0768.20016
  19. [19] S. Ihara and T. Yokonuma, On the second cohomology groups (Schur multipliers) of finite reflection groups, J. Fac. Sci. Univ. Tokyo Sect. I 11 (1965), 155-171. Zbl0136.28802
  20. [20] S. Jackowski, J. McClure and R. Oliver, Homotopy classification of self-maps of BG via G-actions. I, Ann. of Math. (2) 135 (1992), 183-226. Zbl0758.55004
  21. [21] J. Lannes, Théorie homotopique des groupes de Lie (d'après W. G. Dwyer et C. W. Wilkerson), Astérisque 227 (1995), 21-45. 
  22. [22] J. M. Møller, Homotopy Lie groups, Bull. Amer. Math. Soc. (N.S.) 32 (1995), 413-428. Zbl0868.55007
  23. [23] J. M. Møller, Deterministic p-compact groups, in: W. Dwyer et al. (eds.), Stable and Unstable Homotopy (Toronto, 1996), Fields Inst. Comm. 19, Amer. Math. Soc., Providence, RI, 1998, 255-278. Zbl0917.55004
  24. [24] J. M. Møller, Normalizers of maximal tori, Math. Z. 231 (1999), 51-74. Zbl0927.55014
  25. [25] J. M. Møller and D. Notbohm, Centers and finite coverings of finite loop spaces, J. Reine Angew. Math. 456 (1994), 99-133. 
  26. [26] M. Nakaoka, Decomposition theorems for homology groups of symmetric groups, Ann. Math. (2) 71 (1960), 16-42. 
  27. [27] D. Notbohm, Unstable splittings of classifying spaces of p-compact groups, preprint, 1994. Zbl0954.55013
  28. [28] D. Notbohm, Classifying spaces of compact Lie groups, in: I. M. James (ed.), Handbook of Algebraic Topology, North-Holland, Amsterdam, 1995, 1049-1094. Zbl0864.55013
  29. [29] D. Notbohm, On the "classifying space" functor for compact Lie groups, J. London Math. Soc. (2) 52 (1995), 185-198. Zbl0836.55008
  30. [30] D. Notbohm, p-adic lattices of pseudoreflection groups, in: C. Broto et al. (eds.), Algebraic Topology: New Trends in Localization and Periodicity (Sant Feliu de Guíxols, 1994), Progr. Math. 136, Birkhäuser, Basel, 1996, 337-352. 
  31. [31] E. W. Read, On the Schur multipliers of the finite imprimitive unitary reflection groups G(m,p,n), J. London Math. Soc. (2) 13 (1976), 150-154. Zbl0328.20011
  32. [32] H. Scheerer, Homotopieäquivalente kompakte Liesche Gruppen, Topology 7 (1968), 227-232. Zbl0179.28404
  33. [33] G. C. Shephard and J. A. Todd, Finite unitary reflection groups, Canad. J. Math. 6 (1954), 274-304. Zbl0055.14305
  34. [34] L. Smith, Polynomial Invariants of Finite Groups, Res. Notes in Math. 6, A K Peters, Wellesley, MA, 1995. Zbl0864.13002
  35. [35] J. Tits, Normalisateurs de tores I. Groupes de Coxeter étendus, J. Algebra 4 (1966), 96-116. Zbl0145.24703
  36. [36] R. van der Hout, The Schur multipliers of the finite primitive complex reflection groups, Nederl. Akad. Wetensch. Proc. Ser. A 80 = Indag. Math. 39 (1977), 101-113. Zbl0361.20014
  37. [37] C. A. Weibel, An Introduction to Homological Algebra, Cambridge Stud. Adv. Math. 38, Cambridge Univ. Press, Cambridge, 1994. 
  38. [38] G. W. Whitehead, Elements of Homotopy Theory, Grad. Texts in Math. 61, Springer, New York, 1978. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.