Théorie homotopique des groupes de Lie

Jean Lannes

Séminaire Bourbaki (1993-1994)

  • Volume: 36, page 21-45
  • ISSN: 0303-1179

How to cite

top

Lannes, Jean. "Théorie homotopique des groupes de Lie." Séminaire Bourbaki 36 (1993-1994): 21-45. <http://eudml.org/doc/110185>.

@article{Lannes1993-1994,
author = {Lannes, Jean},
journal = {Séminaire Bourbaki},
keywords = {-compact groups; maximal tori; Lie groups},
language = {fre},
pages = {21-45},
publisher = {Société Mathématique de France},
title = {Théorie homotopique des groupes de Lie},
url = {http://eudml.org/doc/110185},
volume = {36},
year = {1993-1994},
}

TY - JOUR
AU - Lannes, Jean
TI - Théorie homotopique des groupes de Lie
JO - Séminaire Bourbaki
PY - 1993-1994
PB - Société Mathématique de France
VL - 36
SP - 21
EP - 45
LA - fre
KW - -compact groups; maximal tori; Lie groups
UR - http://eudml.org/doc/110185
ER -

References

top
  1. [BK] A.K. Bousfield et D.M. Kan, Homotopy limits, Completions, and Localizations, Springer L. N. M., 304, 1972. Zbl0259.55004MR365573
  2. [Bo] N. Bourbaki, Groupes et algèbres de Lie, Ch. 4, 5 et 6, Hermann, Paris, (1968). Zbl0483.22001MR240238
  3. [CWW] M. Curtis, A. Wiederhold and B. Williams, Normalizers of Maximal Tori, Springer L.N.M., 418 (1974), 31-47. Zbl0301.22007MR376956
  4. [DMW1] W.G. Dwyer, H.R. Miller and C.W. Wilkerson, The Homotopic Uniqueness of BS3, Algebraic TopologyBarcelona, 1986 (proceedings), Springer L.N.M., 1298 (1987), 90-105. Zbl0654.55015MR928825
  5. [DMW2] W.G. Dwyer, H.R. Miller and C.W. Wilkerson, Homotopical Uniqueness of Classifying Spaces, Topology, 31 (1992), 29-45. Zbl0748.55005MR1153237
  6. [Dw] W.G. Dwyer, Transfer maps for fibrations, preprint 1993. MR1384465
  7. [DW1] W.G. Dwyer and C.W. Wilkerson, Smith theory and the functor T, Comm. Math. Helv., 66 (1991), 1-17. Zbl0726.55011MR1090162
  8. [DW2] W.G. Dwyer and C.W. Wilkerson, A new finite loop space at the prime two, J. Amer. Math. Soc., 6 (1993), 37-63. Zbl0769.55007MR1161306
  9. [DW3] W.G. Dwyer and C.W. Wilkerson, Homotopy fixed points methods for Lie groups and finite loop spaces, Annals of Math., 139 (1994), 395-442. Zbl0801.55007MR1274096
  10. [DW4] W.G. Dwyer and C.W. Wilkerson, The center of a p-compact group, preprint 1993. 
  11. [DW5] W.G. Dwyer and C.W. Wilkerson, Products of small finite loop spaces at the prime 2 , preprint 1993. MR1161306
  12. [CE] A. Clark and J. Ewing, The realization of polynomial algebras as cohomology rings, Pacific J. Math., 50 (1974), 425-434. Zbl0333.55002MR367979
  13. [La] J. Lannes, Sur les espaces fonctionnels dont la source est le classifiant d'un p-groupe abélien élémentaire, Publ. Math. I. H. E. S., 75 (1992), 135-244. Zbl0857.55011MR1179079
  14. [LZ] J. Lannes et S. Zarati, Théorie de Smith algébrique et classification des H*V - U-injectifs, Prépublication Mathématique de l'Université Paris VII, 42 (1992). 
  15. [Ma] H. Matsumara, Commutative ring theory, Cambridge Studies in Advanced Mathematics8. Zbl0603.13001MR879273
  16. [Mi] H.R. Miller, The Sullivan conjecture on maps from classifying spaces, Annals of Math., 120 (1984), 39-87. Zbl0552.55014MR750716
  17. [ST] G.C. Shephard and J.A. Todd, Finite unitary reflection groups, Canadian J. Math., 6 (1954) 274-304. Zbl0055.14305MR59914
  18. [Ti] J. Tits, Normalisateurs de tores I. Groupes de Coxeter étendus., J. of Algebra, 4 (1966), 96-116. Zbl0145.24703MR206117

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.