Waldhausen’s Nil groups and continuously controlled K-theory
Hans Munkholm; Stratos Prassidis
Fundamenta Mathematicae (1999)
- Volume: 161, Issue: 1-2, page 217-224
- ISSN: 0016-2736
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] D. R. Anderson, F. X. Connolly and H. J. Munkholm, A comparison of continuously controlled and controlled K-theory, Topology Appl. 71 (1996), 9-46. Zbl0853.19002
- [2] D. R. Anderson and H. J. Munkholm, Geometric modules and algebraic K-homology theory, K-Theory 3 (1990), 561-602. Zbl0772.57036
- [3] D. R. Anderson and H. J. Munkholm, Geometric modules and Quinn homology theory, ibid. 7 (1993), 443-475. Zbl0907.55005
- [4] D. R. Anderson and H. J. Munkholm, Continuously controlled K-theory with variable coefficients, J. Pure Appl. Algebra, to appear. Zbl0942.19001
- [5] M. M. Cohen, A Course in Simple-Homotopy Theory, Grad. Texts in Math. 10, Springer, New York, 1973.
- [6] F. Quinn, Geometric algebra, in: Lecture Notes in Math. 1126, Springer, Berlin, 1985, 182-198.
- [7] A. A. Ranicki and M. Yamasaki, Controlled K-theory, Topology Appl. 61 (1995), 1-59.
- [8] F. Waldhausen, Algebraic K-theory of generalized free products. Parts 1 and 2, Ann. of Math. (2) 108 (1978), 135-256. Zbl0407.18009