Page 1

Displaying 1 – 5 of 5

Showing per page

High-dimensional knots corresponding to the fractional Fibonacci groups

Andrzej Szczepański, Andreĭ Vesnin (1999)

Fundamenta Mathematicae

We prove that the natural HNN-extensions of the fractional Fibonacci groups are the fundamental groups of high-dimensional knot complements. We also give some characterization and interpretation of these knots. In particular we show that some of them are 2-knots.

Splitting obstructions and properties of objects in the Nil categories

Tadeusz Koźniewski (1999)

Fundamenta Mathematicae

We show that the objects of Bass-Farrell categories which represent 0 in the corresponding Nil groups are precisely those which are stably triangular. This extends to Waldhausen's Nil group of the amalgamated free product with index 2 factors. Applications include a description of Cappell's special UNil group and reformulations of those splitting and fibering theorems which use the Nil groups.

Waldhausen’s Nil groups and continuously controlled K-theory

Hans Munkholm, Stratos Prassidis (1999)

Fundamenta Mathematicae

Let Γ = Γ 1 * G Γ 2 be the pushout of two groups Γ i , i = 1,2, over a common subgroup G, and H be the double mapping cylinder of the corresponding diagram of classifying spaces B Γ 1 B G B Γ 2 . Denote by ξ the diagram I p H 1 X = H , where p is the natural map onto the unit interval. We show that the N i l groups which occur in Waldhausen’s description of K * ( Γ ) coincide with the continuously controlled groups * c c ( ξ ) , defined by Anderson and Munkholm. This also allows us to identify the continuously controlled groups * c c ( ξ + ) which are known to form a homology...

Currently displaying 1 – 5 of 5

Page 1