High-dimensional knots corresponding to the fractional Fibonacci groups
Andrzej Szczepański; Andreĭ Vesnin
Fundamenta Mathematicae (1999)
- Volume: 161, Issue: 1-2, page 235-240
- ISSN: 0016-2736
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] K. Brown, Cohomology of Groups, Springer, New York, 1982. Zbl0584.20036
- [2] H. Helling, A. Kim and J. Mennicke, A geometric study of Fibonacci groups, J. Lie Theory 8 (1998), 1-23. Zbl0896.20026
- [3] J. Hillman, Abelian normal subgroups of two-knot groups, Comment. Math. Helv. 61 (1986), 122-148. Zbl0611.57015
- [4] J. Hillman, 2-Knots and Their Groups, Austral. Math. Soc. Lecture Ser. 5, 1989.
- [5] D. Johnson, Presentation of Groups, London Math. Soc. Lecture Note Ser. 22, Cambridge Univ. Press, 1976.
- [6] A. Kim and A. Vesnin, A topological study of the fractional Fibonacci groups, Siberian Math. J. 39 (1998).
- [7] C. MacLachlan, Generalizations of Fibonacci numbers, groups and manifolds, in: Combinatorial and Geometric Group Theory (Edinburgh, 1993), A. J. Duncan, N. D. Gilbert and J. Howie (eds.), London Math. Soc. Lecture Note Ser. 204, Cambridge Univ. Press, 1995, 233-238. Zbl0851.20026
- [8] W. Magnus, A. Karras and D. Solitar, Combinatorial Group Theory, Wiley Interscience, New York, 1966.
- [9] S. Plotnik, Equivariant intersection forms, knots in , and rotations in 2-spheres, Trans. Amer. Math. Soc. 296 (1986), 543-575.
- [10] D. Rolfsen, Knots and Links, Publish or Perish, Berkeley, CA, 1976.
- [11] A. Szczepański, High dimensional knot groups and HNN extensions of the Fibonacci groups, J. Knot Theory Ramifications 7 (1998), 503-508. Zbl0908.57005
- [12] C. Zeeman, Twisting spun knots, Trans. Amer. Math. Soc. 115 (1965), 471-495. Zbl0134.42902