# Rigid ${\aleph}_{\epsilon}$ -saturated models of superstable theories

Fundamenta Mathematicae (1999)

- Volume: 162, Issue: 1, page 37-46
- ISSN: 0016-2736

## Access Full Article

top## Abstract

top## How to cite

topShami, Ziv, and Shelah, Saharon. "Rigid $ℵ_ε$ -saturated models of superstable theories." Fundamenta Mathematicae 162.1 (1999): 37-46. <http://eudml.org/doc/212411>.

@article{Shami1999,

abstract = {In a countable superstable NDOP theory, the existence of a rigid $ﬡ_ε$-saturated model implies the existence of $2^λ$ rigid $ﬡ_ε$-saturated models of power λ for every $λ > 2^\{ﬡ_0\}$.},

author = {Shami, Ziv, Shelah, Saharon},

journal = {Fundamenta Mathematicae},

keywords = {dimensionally diverse; multidimensional theory; complete type; tree; saturated models; Ehrenfeucht's conjecture; stability; rigid models; saturation; superstable theories; strongly deep; nonorthogonal automorphism},

language = {eng},

number = {1},

pages = {37-46},

title = {Rigid $ℵ_ε$ -saturated models of superstable theories},

url = {http://eudml.org/doc/212411},

volume = {162},

year = {1999},

}

TY - JOUR

AU - Shami, Ziv

AU - Shelah, Saharon

TI - Rigid $ℵ_ε$ -saturated models of superstable theories

JO - Fundamenta Mathematicae

PY - 1999

VL - 162

IS - 1

SP - 37

EP - 46

AB - In a countable superstable NDOP theory, the existence of a rigid $ﬡ_ε$-saturated model implies the existence of $2^λ$ rigid $ﬡ_ε$-saturated models of power λ for every $λ > 2^{ﬡ_0}$.

LA - eng

KW - dimensionally diverse; multidimensional theory; complete type; tree; saturated models; Ehrenfeucht's conjecture; stability; rigid models; saturation; superstable theories; strongly deep; nonorthogonal automorphism

UR - http://eudml.org/doc/212411

ER -

## References

top- [B] J. T. Baldwin, Fundamentals of Stability Theory, Springer, 1988.
- [Sh-401] S. Shelah, Characterizing an ${\ufb21}_{\epsilon}$-saturated model of superstable NDOP theories by its ${L}_{\infty ,{\ufb21}_{\epsilon}}$(d.q)-theory, preprint, 1992.
- [Sh-C] S. Shelah, Classification Theory and the Number of Non-Isomorphic Models, rev. ed., North-Holland, Amsterdam, 1990.

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.