On finite sum theorems for transfinite inductive dimensions
Fundamenta Mathematicae (1999)
- Volume: 162, Issue: 1, page 91-98
- ISSN: 0016-2736
Access Full Article
topAbstract
topHow to cite
topReferences
top- [Ch] V. A. Chatyrko, Ordinal products of topological spaces, Fund. Math. 144 (1994), 95-117. Zbl0809.54027
- [Ch-K] V. A. Chatyrko and K. L. Kozlov, On ( transfinite) small inductive dimension of products, preprint, 1999.
- [E] R. Engelking, Theory of Dimensions, Finite and Infinite, Heldermann Verlag, Lemgo, 1995. Zbl0872.54002
- [F] V. V. Filippov, A bicompactum with noncoinciding inductive dimensions, Soviet Math. Dokl. 10 (1969), 208-211. Zbl0186.27002
- [Le] B. T. Levshenko, Spaces of transfinite dimensions, Mat. Sb. 67 (1965), 225-266 (in Russian).
- [Lu1] L. A. Luxemburg, Compacta with noncoinciding transfinite dimensions, Soviet Math. Dokl. 14 (1973), 1593-1597. Zbl0292.54044
- [Lu2] L. A. Luxemburg, On compact metric spaces with noncoinciding transfinite dimensions, Pacific J. Math. 93 (1981), 339-386. Zbl0397.54048
- [S] Ju. M. Smirnov, On universal spaces for certain classes of infinite-dimensional spaces, Izv. Akad. Nauk SSSR 23 (1959), 185-196 (in Russian). Zbl0086.36804