# On finite sum theorems for transfinite inductive dimensions

Fundamenta Mathematicae (1999)

- Volume: 162, Issue: 1, page 91-98
- ISSN: 0016-2736

## Access Full Article

top## Abstract

top## How to cite

topChatyrko, Vitalij. "On finite sum theorems for transfinite inductive dimensions." Fundamenta Mathematicae 162.1 (1999): 91-98. <http://eudml.org/doc/212414>.

@article{Chatyrko1999,

abstract = {We discuss the exactness of estimates in the finite sum theorems for transfinite inductive dimensions trind and trInd. The technique obtained gives an opportunity to repeat and sometimes strengthen some well known results about compacta with trind ≠ trInd. In particular we improve an estimate of the small transfinite inductive dimension of Smirnov’s compacta $S^α, α < ω_1$, given by Luxemburg [Lu2].},

author = {Chatyrko, Vitalij},

journal = {Fundamenta Mathematicae},

keywords = {transfinite dimension; finite sum theorem; Smirnov compactum},

language = {eng},

number = {1},

pages = {91-98},

title = {On finite sum theorems for transfinite inductive dimensions},

url = {http://eudml.org/doc/212414},

volume = {162},

year = {1999},

}

TY - JOUR

AU - Chatyrko, Vitalij

TI - On finite sum theorems for transfinite inductive dimensions

JO - Fundamenta Mathematicae

PY - 1999

VL - 162

IS - 1

SP - 91

EP - 98

AB - We discuss the exactness of estimates in the finite sum theorems for transfinite inductive dimensions trind and trInd. The technique obtained gives an opportunity to repeat and sometimes strengthen some well known results about compacta with trind ≠ trInd. In particular we improve an estimate of the small transfinite inductive dimension of Smirnov’s compacta $S^α, α < ω_1$, given by Luxemburg [Lu2].

LA - eng

KW - transfinite dimension; finite sum theorem; Smirnov compactum

UR - http://eudml.org/doc/212414

ER -

## References

top- [Ch] V. A. Chatyrko, Ordinal products of topological spaces, Fund. Math. 144 (1994), 95-117. Zbl0809.54027
- [Ch-K] V. A. Chatyrko and K. L. Kozlov, On ( transfinite) small inductive dimension of products, preprint, 1999.
- [E] R. Engelking, Theory of Dimensions, Finite and Infinite, Heldermann Verlag, Lemgo, 1995. Zbl0872.54002
- [F] V. V. Filippov, A bicompactum with noncoinciding inductive dimensions, Soviet Math. Dokl. 10 (1969), 208-211. Zbl0186.27002
- [Le] B. T. Levshenko, Spaces of transfinite dimensions, Mat. Sb. 67 (1965), 225-266 (in Russian).
- [Lu1] L. A. Luxemburg, Compacta with noncoinciding transfinite dimensions, Soviet Math. Dokl. 14 (1973), 1593-1597. Zbl0292.54044
- [Lu2] L. A. Luxemburg, On compact metric spaces with noncoinciding transfinite dimensions, Pacific J. Math. 93 (1981), 339-386. Zbl0397.54048
- [S] Ju. M. Smirnov, On universal spaces for certain classes of infinite-dimensional spaces, Izv. Akad. Nauk SSSR 23 (1959), 185-196 (in Russian). Zbl0086.36804

## Citations in EuDML Documents

top## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.