On (transfinite) small inductive dimension of products

Vitalij A. Chatyrko; Konstantin L. Kozlov

Commentationes Mathematicae Universitatis Carolinae (2000)

  • Volume: 41, Issue: 3, page 597-603
  • ISSN: 0010-2628

Abstract

top
In this paper we study the behavior of the (transfinite) small inductive dimension ( t r i n d ) i n d on finite products of topological spaces. In particular we essentially improve Toulmin’s estimation [T] of t r i n d for Cartesian products.

How to cite

top

Chatyrko, Vitalij A., and Kozlov, Konstantin L.. "On (transfinite) small inductive dimension of products." Commentationes Mathematicae Universitatis Carolinae 41.3 (2000): 597-603. <http://eudml.org/doc/248579>.

@article{Chatyrko2000,
abstract = {In this paper we study the behavior of the (transfinite) small inductive dimension $(trind)$$ind$ on finite products of topological spaces. In particular we essentially improve Toulmin’s estimation [T] of $trind$ for Cartesian products.},
author = {Chatyrko, Vitalij A., Kozlov, Konstantin L.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {transfinite dimension},
language = {eng},
number = {3},
pages = {597-603},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On (transfinite) small inductive dimension of products},
url = {http://eudml.org/doc/248579},
volume = {41},
year = {2000},
}

TY - JOUR
AU - Chatyrko, Vitalij A.
AU - Kozlov, Konstantin L.
TI - On (transfinite) small inductive dimension of products
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2000
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 41
IS - 3
SP - 597
EP - 603
AB - In this paper we study the behavior of the (transfinite) small inductive dimension $(trind)$$ind$ on finite products of topological spaces. In particular we essentially improve Toulmin’s estimation [T] of $trind$ for Cartesian products.
LA - eng
KW - transfinite dimension
UR - http://eudml.org/doc/248579
ER -

References

top
  1. Basmanov V.N., On inductive dimensions of products of spaces, Moscow Univ. Math. Bull. 36 (1981), 1 19-22. (1981) MR0613119
  2. Chatyrko V.A., Ordinal products of topological spaces, Fund. Math. 144 (1994), 95-117. (1994) Zbl0809.54027MR1273690
  3. Chatyrko V.A., On finite sum theorems for transfinite inductive dimensions, Fund. Math., to appear. Zbl0938.54031MR1734819
  4. Engelking R., Theory of Dimensions, Finite and Infinite, Heldermann Verlag, Lemgo, 1995. Zbl0872.54002MR1363947
  5. Filippov V.V., On the inductive dimension of the product of bicompacta, Soviet Math. Dokl. 13 (1972), 250-254. (1972) Zbl0243.54032
  6. Hessenberg G., Grundbegriffe der Mengenlehre, Göttingen, 1906. 
  7. Lifanov I.K., On the dimension of the product of one-dimensional bicompacta, Soviet Math. Dokl. 9 (1968), 648-651. (1968) 
  8. Malyhin D.V., Some properties of topological products (in Russian), Moscow State University, Dissertation, 1999. 
  9. Pasynkov B.A., On inductive dimensions, Soviet Math. Dokl. 10 (1969), 1402-1406. (1969) Zbl0205.52803MR0254821
  10. Toulmin G.H., Shuffling ordinals and transfinite dimension, Proc. London Math. Soc. 4 (1954), 177-195. (1954) Zbl0055.41406MR0065907
  11. Vinogradov R.N., On transfinite dimension, Moscow Univ. Math. Bull. 48 (1993), 5 15-17. (1993) MR1355765
  12. Zarelua A.V., On a theorem of Hurewicz, Amer. Math. Soc. Transl. 55 (1966), 2 141-152. (1966) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.