Topological entropy on zero-dimensional spaces

Jozef Bobok; Ondřej Zindulka

Fundamenta Mathematicae (1999)

  • Volume: 162, Issue: 3, page 233-249
  • ISSN: 0016-2736

Abstract

top
Let X be an uncountable compact metrizable space of topological dimension zero. Given any a ∈[0,∞] there is a homeomorphism on X whose topological entropy is a.

How to cite

top

Bobok, Jozef, and Zindulka, Ondřej. "Topological entropy on zero-dimensional spaces." Fundamenta Mathematicae 162.3 (1999): 233-249. <http://eudml.org/doc/212422>.

@article{Bobok1999,
abstract = {Let X be an uncountable compact metrizable space of topological dimension zero. Given any a ∈[0,∞] there is a homeomorphism on X whose topological entropy is a.},
author = {Bobok, Jozef, Zindulka, Ondřej},
journal = {Fundamenta Mathematicae},
keywords = {dynamical system; topological entropy; homeomorphism; zero-dimensional compact space},
language = {eng},
number = {3},
pages = {233-249},
title = {Topological entropy on zero-dimensional spaces},
url = {http://eudml.org/doc/212422},
volume = {162},
year = {1999},
}

TY - JOUR
AU - Bobok, Jozef
AU - Zindulka, Ondřej
TI - Topological entropy on zero-dimensional spaces
JO - Fundamenta Mathematicae
PY - 1999
VL - 162
IS - 3
SP - 233
EP - 249
AB - Let X be an uncountable compact metrizable space of topological dimension zero. Given any a ∈[0,∞] there is a homeomorphism on X whose topological entropy is a.
LA - eng
KW - dynamical system; topological entropy; homeomorphism; zero-dimensional compact space
UR - http://eudml.org/doc/212422
ER -

References

top
  1. [1] L. Alsedà, J. Llibre, and M. Misiurewicz, Combinatorial Dynamics and Entropy in Dimension One, Adv. Ser. Nonlinear Dynam. 5, World Sci., Singapore, 1993. Zbl0843.58034
  2. [2] R. Bowen, Entropy for group endomorphisms and homogeneous spaces, Trans. Amer. Math. Soc. 153 (1971), 401-414. Zbl0212.29201
  3. [3] H. Cook, Continua which admit only the identity mapping onto nondegenerate subcontinua, Fund. Math. 60 (1967), 241-249. Zbl0158.41503
  4. [4] M. Denker, C. Grillenberger, and K. Sigmund, Ergodic Theory on Compact Spaces, Lecture Notes in Math. 527, Springer, 1976. Zbl0328.28008
  5. [5] R. Engelking, Dimension Theory, North-Holland, Amsterdam, 1978. 
  6. [6] R. Engelking, General Topology, Heldermann, Berlin, 1989. 
  7. [7] S. Mazurkiewicz et W. Sierpiński, Contribution à la topologie des ensembles dénombrables, Fund. Math. 1 (1920), 17-27. Zbl47.0176.01
  8. [8] P. Walters, An Introduction to Ergodic Theory, Grad. Texts in Math. 79, Springer, New York, 1981. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.