If it looks and smells like the reals...

Franklin Tall

Fundamenta Mathematicae (2000)

  • Volume: 163, Issue: 1, page 1-11
  • ISSN: 0016-2736

Abstract

top
Given a topological space ⟨X,T⟩ ∈ M, an elementary submodel of set theory, we define X M to be X ∩ M with topology generated by U ∩ M:U ∈ T ∩ M. We prove that if X M is homeomorphic to ℝ, then X = X M . The same holds for arbitrary locally compact uncountable separable metric spaces, but is independent of ZFC if “local compactness” is omitted.

How to cite

top

Tall, Franklin. "If it looks and smells like the reals...." Fundamenta Mathematicae 163.1 (2000): 1-11. <http://eudml.org/doc/212426>.

@article{Tall2000,
abstract = {Given a topological space ⟨X,T⟩ ∈ M, an elementary submodel of set theory, we define $X_M$ to be X ∩ M with topology generated by U ∩ M:U ∈ T ∩ M. We prove that if $X_M$ is homeomorphic to ℝ, then $X = X_M$. The same holds for arbitrary locally compact uncountable separable metric spaces, but is independent of ZFC if “local compactness” is omitted.},
author = {Tall, Franklin},
journal = {Fundamenta Mathematicae},
keywords = {elementary submodel; real line; locally compact separable metric space; local compactness; elementary submodel of set theory; separable metric spaces},
language = {eng},
number = {1},
pages = {1-11},
title = {If it looks and smells like the reals...},
url = {http://eudml.org/doc/212426},
volume = {163},
year = {2000},
}

TY - JOUR
AU - Tall, Franklin
TI - If it looks and smells like the reals...
JO - Fundamenta Mathematicae
PY - 2000
VL - 163
IS - 1
SP - 1
EP - 11
AB - Given a topological space ⟨X,T⟩ ∈ M, an elementary submodel of set theory, we define $X_M$ to be X ∩ M with topology generated by U ∩ M:U ∈ T ∩ M. We prove that if $X_M$ is homeomorphic to ℝ, then $X = X_M$. The same holds for arbitrary locally compact uncountable separable metric spaces, but is independent of ZFC if “local compactness” is omitted.
LA - eng
KW - elementary submodel; real line; locally compact separable metric space; local compactness; elementary submodel of set theory; separable metric spaces
UR - http://eudml.org/doc/212426
ER -

References

top
  1. [AL] J. M. Aarts and D. J. Lutzer, Completeness properties designed for recognizing Baire spaces, Dissertationes Math. 116 (1974). Zbl0296.54027
  2. [B] J. E. Baumgartner, Almost disjoint sets, the dense set problem and partition calculus, Ann. Math. Logic 10 (1976), 401-439. Zbl0339.04003
  3. [D] A. Dow, An introduction to applications of elementary submodels in topology, Topology Proc. 13 (1988), 17-72. Zbl0696.03024
  4. [E] R. Engelking, General Topology, Heldermann, Berlin, 1989. 
  5. [F] W. G. Fleissner, On λ-collectionwise Hausdorff spaces, Topology Proc. 2 (1977), 445-456. 
  6. [FMS] M. Foreman, M. Magidor and S. Shelah, Martin's Maximum, saturated ideals, and non-regular ultrafilters, I, Ann. of Math. 127 (1988), 1-47. Zbl0645.03028
  7. [J] I. Juhász, Cardinal Functions in Topology-Ten Years Later, Math. Centre, Amsterdam, 1980. Zbl0479.54001
  8. [Ju] L. R. Junqueira, Upwards preservation by elementary submodels, preprint. Zbl1002.54003
  9. [JT] L. R. Junqueira and F. D. Tall, The topology of elementary submodels, Topology Appl. 82 (1998), 239-266. Zbl0903.54002
  10. [JW] W. Just and M. Weese, Discovering Modern Set Theory, Volume II, Amer. Math. Soc., Providence, 1997. Zbl0887.03036
  11. [K] A. Kanamori, The Higher Infinite, Springer, Berlin, 1994. Zbl0813.03034
  12. [KT] K. Kunen and F. D. Tall, The real line in elementary submodels of set theory, J. Symbolic Logic, to appear. Zbl0960.03033
  13. [R] J. Roitman, Basic S and L, in: Handbook of Set-Theoretic Topology, K. Kunen and J. E. Vaughan (eds.), North-Holland, Amsterdam, 1984, 295-326. 
  14. [S] J. H. Silver, The independence of Kurepa's conjecture and two-cardinal conjectures in model theory, in: Axiomatic Set Theory, D. S. Scott (ed.), Proc. Sympos. Pure Math. 13, Amer. Math. Soc., Providence, 1971, 383-390. Zbl0255.02068
  15. [T] A. Tarski, Sur la décomposition des ensembles en sous-ensembles presque disjoints, Fund. Math. 12 (1928), 188-205. Zbl54.0092.02

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.