Misiurewicz maps unfold generically (even if they are critically non-finite)
Fundamenta Mathematicae (2000)
- Volume: 163, Issue: 1, page 39-54
- ISSN: 0016-2736
Access Full Article
topAbstract
topHow to cite
topvan Strien, Sebastian. "Misiurewicz maps unfold generically (even if they are critically non-finite)." Fundamenta Mathematicae 163.1 (2000): 39-54. <http://eudml.org/doc/212428>.
@article{vanStrien2000,
abstract = {We show that in normalized families of polynomial or rational maps, Misiurewicz maps (critically finite or infinite) unfold generically. For example, if $f_\{λ_0\}$ is critically finite with non-degenerate critical point $c_1(λ_0),...,c_n(λ_0)$ such that $f_\{λ_0\}^\{k_i\}(c_i(λ_0)) = p_i(λ_0)$ are hyperbolic periodic points for i = 1,...,n, then
IV-1. Age impartible......................................................................................................................................................................... 31
$λ ↦ (f_λ^\{k_1\}(c_1(λ))-p_1(λ),..., f_λ^\{k_\{d-2\}\}(c_\{d-2\}(λ))-p_\{d-2\}(λ))$ is a local diffeomorphism for λ near $λ_0$. For quadratic families this result was proved previously in DH using entirely different methods.},
author = {van Strien, Sebastian},
journal = {Fundamenta Mathematicae},
keywords = {conjugacy; rational maps; Misiurewicz map},
language = {eng},
number = {1},
pages = {39-54},
title = {Misiurewicz maps unfold generically (even if they are critically non-finite)},
url = {http://eudml.org/doc/212428},
volume = {163},
year = {2000},
}
TY - JOUR
AU - van Strien, Sebastian
TI - Misiurewicz maps unfold generically (even if they are critically non-finite)
JO - Fundamenta Mathematicae
PY - 2000
VL - 163
IS - 1
SP - 39
EP - 54
AB - We show that in normalized families of polynomial or rational maps, Misiurewicz maps (critically finite or infinite) unfold generically. For example, if $f_{λ_0}$ is critically finite with non-degenerate critical point $c_1(λ_0),...,c_n(λ_0)$ such that $f_{λ_0}^{k_i}(c_i(λ_0)) = p_i(λ_0)$ are hyperbolic periodic points for i = 1,...,n, then
IV-1. Age impartible......................................................................................................................................................................... 31
$λ ↦ (f_λ^{k_1}(c_1(λ))-p_1(λ),..., f_λ^{k_{d-2}}(c_{d-2}(λ))-p_{d-2}(λ))$ is a local diffeomorphism for λ near $λ_0$. For quadratic families this result was proved previously in DH using entirely different methods.
LA - eng
KW - conjugacy; rational maps; Misiurewicz map
UR - http://eudml.org/doc/212428
ER -
References
top- [AGLV] V. I. Arnol'd, V. V. Goryunov, O. V. Lyashko and V. A. Vasil'ev, Singularity Theory I, Springer, 1998.
- [DH] A. Douady and J. H. Hubbard, On the dynamics of polynomial-like mappings, Ann. Sci. Ecole Norm. Sup. 18 (1985), 287-343. Zbl0587.30028
- [Le] O. Lehto, Univalent Functions and Teichmüller Spaces, Grad. Texts in Math. 109, Springer, 1987.
- [LV] O. Lehto and K. I. Virtanen, Quasiconformal Mappings in the Plane, Springer, 1973. Zbl0267.30016
- [LS1] G. Levin and S. van Strien, Local connectivity of the Julia set of real polynomials, Ann. of Math. 147 (1998), 471-541. Zbl0941.37031
- [LS2] G. Levin and S. van Strien, Total disconnectedness of the Julia set of real polynomials, Astérisque, to appear.
- [Ma1] R. Mañé, Hyperbolicity, sinks and measure in one dimensional dynamics, Comm. Math. Phys. 100 (1985), 495-524. Zbl0583.58016
- [Ma2] R. Mañé, On a theorem of Fatou, Bol. Soc. Brasil. Mat. 24 (1993), 1-11. Zbl0781.30023
- [MSS] R. Mañé, P. Sad and D. Sullivan, On the dynamics of rational maps, Ann. Sci. Ecole Norm. Sup. 16 (1983), 193-217. Zbl0524.58025
- [McM] C. McMullen, Complex Dynamics and Renormalization, Ann. of Math. Stud. 135, Princeton Univ. Press, 1994.
- [MS] W. de Melo and S. van Strien, One-Dimensional Dynamics, Ergeb. Math. Grenzgeb. 25, Springer, 1993. Zbl0791.58003
- [ST] M. Shishikura and L. Tan, Mañé's theorem, to appear. Zbl1062.37046
- [TL] L. Tan, Similarity between the Mandelbrot set and Julia sets, Comm. Math. Phys. 134 (1990), 587-617. Zbl0726.58026
- [Tsu] M. Tsujii, A simple proof for monotonicity of entropy in the quadratic family, Ergodic Theory Dynam. Systems, to appear.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.