Strong bifurcation loci of full Hausdorff dimension
Annales scientifiques de l'École Normale Supérieure (2012)
- Volume: 45, Issue: 6, page 947-984
- ISSN: 0012-9593
Access Full Article
topAbstract
topHow to cite
topGauthier, Thomas. "Strong bifurcation loci of full Hausdorff dimension." Annales scientifiques de l'École Normale Supérieure 45.6 (2012): 947-984. <http://eudml.org/doc/272166>.
@article{Gauthier2012,
abstract = {In the moduli space $\mathcal \{M\}_d$ of degree $d$ rational maps, the bifurcation locus is the support of a closed $(1,1)$ positive current $T_\mathrm \{bif\}$ which is called the bifurcation current. This current gives rise to a measure $\mu _\mathrm \{bif\}:=(T_\mathrm \{bif\})^\{2d-2\}$ whose support is the seat of strong bifurcations. Our main result says that $\mathrm \{supp\}(\mu _\mathrm \{bif\})$ has maximal Hausdorff dimension $2(2d-2)$. As a consequence, the set of degree $d$ rational maps having $(2d-2)$ distinct neutral cycles is dense in a set of full Hausdorff dimension.},
author = {Gauthier, Thomas},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {complex dynamics; bifurcations; pluripotential theory; Hausdorff dimension},
language = {eng},
number = {6},
pages = {947-984},
publisher = {Société mathématique de France},
title = {Strong bifurcation loci of full Hausdorff dimension},
url = {http://eudml.org/doc/272166},
volume = {45},
year = {2012},
}
TY - JOUR
AU - Gauthier, Thomas
TI - Strong bifurcation loci of full Hausdorff dimension
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2012
PB - Société mathématique de France
VL - 45
IS - 6
SP - 947
EP - 984
AB - In the moduli space $\mathcal {M}_d$ of degree $d$ rational maps, the bifurcation locus is the support of a closed $(1,1)$ positive current $T_\mathrm {bif}$ which is called the bifurcation current. This current gives rise to a measure $\mu _\mathrm {bif}:=(T_\mathrm {bif})^{2d-2}$ whose support is the seat of strong bifurcations. Our main result says that $\mathrm {supp}(\mu _\mathrm {bif})$ has maximal Hausdorff dimension $2(2d-2)$. As a consequence, the set of degree $d$ rational maps having $(2d-2)$ distinct neutral cycles is dense in a set of full Hausdorff dimension.
LA - eng
KW - complex dynamics; bifurcations; pluripotential theory; Hausdorff dimension
UR - http://eudml.org/doc/272166
ER -
References
top- [1] M. Aspenberg, Rational Misiurewicz maps are rare, Comm. Math. Phys.291 (2009), 645–658. Zbl1185.37103MR2534788
- [2] M. Aspenberg & J. Graczyk, Dimension and measure for semi-hyperbolic rational maps of degree 2, C. R. Math. Acad. Sci. Paris347 (2009), 395–400. Zbl1215.37030MR2537237
- [3] G. Bassanelli & F. Berteloot, Bifurcation currents in holomorphic dynamics on , J. reine angew. Math. 608 (2007), 201–235. Zbl1136.37025MR2339474
- [4] G. Bassanelli & F. Berteloot, Lyapunov exponents, bifurcation currents and laminations in bifurcation loci, Math. Ann.345 (2009), 1–23. Zbl1179.37067MR2520048
- [5] G. Bassanelli & F. Berteloot, Distribution of polynomials with cycles of a given multiplier, Nagoya Math. J.201 (2011), 23–43. Zbl1267.37049MR2772169
- [6] E. Bedford & B. A. Taylor, The Dirichlet problem for a complex Monge-Ampere equation, Bull. Amer. Math. Soc.82 (1976), 102–104. Zbl0322.31008MR393574
- [7] L. Bers & H. L. Royden, Holomorphic families of injections, Acta Math.157 (1986), 259–286. Zbl0619.30027MR857675
- [8] F. Berteloot, C. Dupont & L. Molino, Normalization of bundle holomorphic contractions and applications to dynamics, Ann. Inst. Fourier (Grenoble) 58 (2008), 2137–2168. Zbl1151.37038MR2473632
- [9] F. Berteloot & V. Mayer, Rudiments de dynamique holomorphe, Cours Spécialisés 7, Soc. Math. France, 2001. Zbl1051.37019MR1973050
- [10] B. Branner & J. H. Hubbard, The iteration of cubic polynomials. I. The global topology of parameter space, Acta Math. 160 (1988), 143–206. Zbl0668.30008MR945011
- [11] X. Buff & A. L. Epstein, Bifurcation measure and postcritically finite rational maps, in Complex dynamics : families and friends / edited by Dierk Schleicher, A K Peters, Ltd., 2009, 491–512. Zbl1180.37056MR2508266
- [12] E. M. Chirka, Complex analytic sets, Mathematics and its Applications (Soviet Series) 46, Kluwer Academic Publishers Group, 1989. Zbl0683.32002MR1111477
- [13] L. DeMarco, Dynamics of rational maps: a current on the bifurcation locus, Math. Res. Lett.8 (2001), 57–66. Zbl0991.37030MR1825260
- [14] L. DeMarco, Dynamics of rational maps: Lyapunov exponents, bifurcations, and capacity, Math. Ann.326 (2003), 43–73. Zbl1032.37029MR1981611
- [15] T.-C. Dinh & N. Sibony, Dynamics in several complex variables: endomorphisms of projective spaces and polynomial-like mappings, in Holomorphic dynamical systems, Lecture Notes in Math. 1998, Springer, 2010, 165–294. Zbl1218.37055MR2648690
- [16] R. Dujardin, Approximation des fonctions lisses sur certaines laminations, Indiana Univ. Math. J.55 (2006), 579–592. Zbl1102.53014MR2225446
- [17] R. Dujardin, Cubic polynomials: a measurable view on parameter space, in Complex dynamics : families and friends / edited by Dierk Schleicher, A K Peters, Ltd., 2009, 451–490. Zbl1180.37058MR2508265
- [18] R. Dujardin & C. Favre, Distribution of rational maps with a preperiodic critical point, Amer. J. Math.130 (2008), 979–1032. Zbl1246.37071MR2427006
- [19] R. Mañé, P. Sad & D. P. Sullivan, On the dynamics of rational maps, Ann. Sci. École Norm. Sup.16 (1983), 193–217. Zbl0524.58025MR732343
- [20] P. Mattila, Geometry of sets and measures in Euclidean spaces, Cambridge Studies in Advanced Math. 44, Cambridge Univ. Press, 1995. Zbl0819.28004MR1333890
- [21] C. T. McMullen, Complex dynamics and renormalization, Annals of Math. Studies 135, Princeton Univ. Press, 1994. Zbl0822.30002MR1312365
- [22] C. T. McMullen, Hausdorff dimension and conformal dynamics. II. Geometrically finite rational maps, Comment. Math. Helv. 75 (2000), 535–593. Zbl0982.37043MR1789177
- [23] C. T. McMullen, The Mandelbrot set is universal, in The Mandelbrot set, theme and variations, London Math. Soc. Lecture Note Ser. 274, Cambridge Univ. Press, 2000, 1–17. Zbl1062.37042MR1765082
- [24] C. T. McMullen & D. P. Sullivan, Quasiconformal homeomorphisms and dynamics. III. The Teichmüller space of a holomorphic dynamical system, Adv. Math. 135 (1998), 351–395. Zbl0926.30028MR1620850
- [25] W. de Melo & S. van Strien, One-dimensional dynamics, Ergebn. Math. Grenzg. 25, Springer, 1993. Zbl0791.58003MR1239171
- [26] J. Milnor, On Lattès maps, in Dynamics on the Riemann sphere, Eur. Math. Soc., Zürich, 2006, 9–43. Zbl1235.37015MR2348953
- [27] J. Rivera-Letelier, On the continuity of Hausdorff dimension of Julia sets and similarity between the Mandelbrot set and Julia sets, Fund. Math.170 (2001), 287–317. Zbl0985.37041MR1880905
- [28] W. Rudin, Real and complex analysis, third éd., McGraw-Hill Book Co., 1987. Zbl0278.26001MR924157
- [29] M. Shishikura, The Hausdorff dimension of the boundary of the Mandelbrot set and Julia sets, Ann. of Math.147 (1998), 225–267. Zbl0922.58047MR1626737
- [30] M. Shishikura & L. Tan, An alternative proof of Mañé’s theorem on non-expanding Julia sets, in The Mandelbrot set, theme and variations, London Math. Soc. Lecture Note Ser. 274, Cambridge Univ. Press, 2000, 265–279. Zbl1062.37046MR1765093
- [31] N. Sibony, Dynamique des applications rationnelles de , in Dynamique et géométrie complexes (Lyon, 1997), Panor. & Synthèses 8, Soc. Math. France, 1999. Zbl1020.37026MR1760844
- [32] J. H. Silverman, The arithmetic of dynamical systems, Graduate Texts in Math. 241, Springer, 2007. Zbl1130.37001MR2316407
- [33] S. van Strien, Misiurewicz maps unfold generically (even if they are critically non-finite), Fund. Math.163 (2000), 39–54. Zbl0965.37038MR1750334
- [34] L. Tan, Hausdorff dimension of subsets of the parameter space for families of rational maps. (A generalization of Shishikura’s result), Nonlinearity 11 (1998), 233–246. Zbl1019.37502MR1610752
- [35] M. Urbański, Rational functions with no recurrent critical points, Ergodic Theory Dynam. Systems14 (1994), 391–414. Zbl0807.58025MR1279476
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.