# Spectral isomorphisms of Morse flows

T. Downarowicz; Jan Kwiatkowski; Y. Lacroix

Fundamenta Mathematicae (2000)

- Volume: 163, Issue: 3, page 193-213
- ISSN: 0016-2736

## Access Full Article

top## Abstract

top## How to cite

topDownarowicz, T., Kwiatkowski, Jan, and Lacroix, Y.. "Spectral isomorphisms of Morse flows." Fundamenta Mathematicae 163.3 (2000): 193-213. <http://eudml.org/doc/212439>.

@article{Downarowicz2000,

abstract = {A combinatorial description of spectral isomorphisms between Morse flows is provided. We introduce the notion of a regular spectral isomorphism and we study some invariants of such isomorphisms. In the case of Morse cocycles taking values in $G = ℤ_p$, where p is a prime, each spectral isomorphism is regular. The same holds true for arbitrary finite abelian groups under an additional combinatorial condition of asymmetry in the defining Morse sequence, and for Morse flows of rank one. Rank one is shown to be a spectral invariant in the class of Morse flows.},

author = {Downarowicz, T., Kwiatkowski, Jan, Lacroix, Y.},

journal = {Fundamenta Mathematicae},

keywords = {Morse sequence; spectral isomorphism},

language = {eng},

number = {3},

pages = {193-213},

title = {Spectral isomorphisms of Morse flows},

url = {http://eudml.org/doc/212439},

volume = {163},

year = {2000},

}

TY - JOUR

AU - Downarowicz, T.

AU - Kwiatkowski, Jan

AU - Lacroix, Y.

TI - Spectral isomorphisms of Morse flows

JO - Fundamenta Mathematicae

PY - 2000

VL - 163

IS - 3

SP - 193

EP - 213

AB - A combinatorial description of spectral isomorphisms between Morse flows is provided. We introduce the notion of a regular spectral isomorphism and we study some invariants of such isomorphisms. In the case of Morse cocycles taking values in $G = ℤ_p$, where p is a prime, each spectral isomorphism is regular. The same holds true for arbitrary finite abelian groups under an additional combinatorial condition of asymmetry in the defining Morse sequence, and for Morse flows of rank one. Rank one is shown to be a spectral invariant in the class of Morse flows.

LA - eng

KW - Morse sequence; spectral isomorphism

UR - http://eudml.org/doc/212439

ER -

## References

top- [C-N] J. R. Choksi and M. G. Nadkarni, The maximal spectral type of a rank one transformation, Canad. Math. Bull. 37 (1994), 29-36. Zbl0793.28013
- [D-L] T. Downarowicz and Y. Lacroix, Merit factors and Morse sequences, Theoret. Comput. Sci. 209 (1998), 377-387. Zbl0909.68125
- [G] M. Guenais, Morse cocycles and simple Lebesgue spectrum, Ergodic Theory Dynam. Systems 19 (1999), 437-446. Zbl1031.37006
- [J] A. del Junco, A transformation with simple spectrum which is not rank one, Canad. J. Math. 29 (1977), 653-663. Zbl0335.28010
- [J-L-M] A. del Junco, M. Lemańczyk and M. Mentzen, Semisimplicity, joinings and group extensions, Studia Math. 112 (1995), 141-164. Zbl0814.28007
- [I-L] A. Iwanik and Y. Lacroix, Some constructions of strictly ergodic non-regular Toeplitz flows, ibid. 110 (1994), 191-203. Zbl0810.28009
- [K1] M. S. Keane, Generalized Morse sequences, Z. Wahrsch. Verw. Gebiete 10 (1968) 335-353.
- [K2] M. S. Keane, Strongly mixing g-measures, Invent. Math. 16 (1972), 309-324. Zbl0241.28014
- [Ki] J. King, The commutant is the weak closure of the powers, for rank-1 transformations, Ergodic Theory Dynam. Systems 6 (1986), 363-384. Zbl0595.47005
- [Kw] J. Kwiatkowski, Spectral isomorphism of Morse dynamical systems, Bull. Acad. Polon. Sci. 29 (1981), 105-114. Zbl0496.28019
- [K-S] J. Kwiatkowski and A. Sikorski, Spectral properties of G-symbolic Morse shifts, Bull. Soc. Math. France 115 (1987), 19-33. Zbl0624.28014
- [L] M. Lemańczyk, The rank of regular Morse dynamical systems, Z. Wahrsch. Verw. Gebiete 70 (1985), 33-48. Zbl0549.28026
- [M] J. C. Martin, The structure of generalized Morse minimal sets on n-symbols, Proc. Amer. Math. Soc. 2 (1977), 343-355. Zbl0375.28010
- [N] D. Newton, On canonical factors of ergodic dynamical systems, J. London Math. Soc. 19 (1979), 129-136. Zbl0425.28012

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.