# Towers of measurable functions

Fundamenta Mathematicae (2000)

- Volume: 164, Issue: 2, page 165-192
- ISSN: 0016-2736

## Access Full Article

top## Abstract

top## How to cite

topHirschorn, James. "Towers of measurable functions." Fundamenta Mathematicae 164.2 (2000): 165-192. <http://eudml.org/doc/212452>.

@article{Hirschorn2000,

abstract = {We formulate variants of the cardinals f, p and t in terms of families of measurable functions, in order to examine the effect upon these cardinals of adding one random real.},

author = {Hirschorn, James},

journal = {Fundamenta Mathematicae},

keywords = {small cardinals; measurable functions; random real},

language = {eng},

number = {2},

pages = {165-192},

title = {Towers of measurable functions},

url = {http://eudml.org/doc/212452},

volume = {164},

year = {2000},

}

TY - JOUR

AU - Hirschorn, James

TI - Towers of measurable functions

JO - Fundamenta Mathematicae

PY - 2000

VL - 164

IS - 2

SP - 165

EP - 192

AB - We formulate variants of the cardinals f, p and t in terms of families of measurable functions, in order to examine the effect upon these cardinals of adding one random real.

LA - eng

KW - small cardinals; measurable functions; random real

UR - http://eudml.org/doc/212452

ER -

## References

top- [Abr80] F. G. Abramson, A simplicity theorem for amoebas over random reals, Proc. Amer. Math. Soc. 78 (1980), 409-413. Zbl0446.03040
- [BD85] J. E. Baumgartner and P. Dordal, Adjoining dominating functions, J. Symbolic Logic 50 (1985), 94-101. Zbl0566.03031
- [Bel81] M. G. Bell, On the combinatorial principle P(c), Fund. Math. 114 (1981), 149-157. Zbl0581.03038
- [BJ95] T. Bartoszyński and H. Judah, Set Theory. On the Structure of the Real Line, A. K. Peters, Wellesley, MA, 1995.
- [Bla99] A. Blass, Combinatorial cardinal characteristics of the continuum, to appear.
- [BRS96] T. Bartoszyński, A. Rosłanowski and S. Shelah, Adding one random real, J. Symbolic Logic 61 (1996), 80-90. Zbl0859.03023
- [BS96] J. Brendle and S. Shelah, Evasion and prediction. II, J. London Math. Soc. (2) 53 (1996), 19-27. Zbl0854.03045
- [vD84] E. K. van Douwen, The integers and topology, in: Handbook of Set-Theoretic Topology, North-Holland, Amsterdam, 1984, 111-167.
- [Hir00] J. Hirschorn, Towers of Borel functions, Proc. Amer. Math. Soc. 128 (2000), 599-604. Zbl0933.03054
- [Laf97] C. Laflamme, Combinatorial aspects of ${F}_{\sigma}$ filters with an application to N-sets, Proc. Amer. Math. Soc. 125 (1997), 3019-3025. Zbl0883.04004
- [PS87] Z. Piotrowski and A. Szymański, Some remarks on category in topological spaces, ibid. 101 (1987), 156-160. Zbl0634.54002
- [Roi79] J. Roitman, Adding a random or a Cohen real: topological consequences and the effect on Martin's axiom, Fund. Math. 103 (1979), 47-60. Zbl0442.03034
- [Roi79] J. Roitman, Correction to: "Adding a random or a Cohen real: topological consequences and the effect on Martin's axiom", ibid. 129 (1988), 141. Zbl0657.03037
- [Roy88] H. L. Royden, Real Analysis, third ed., Macmillan, New York, 1988.
- [Sco67] D. Scott, A proof of the independence of the continuum hypothesis, Math. Systems Theory 1 (1967), 89-111. Zbl0149.25302
- [Vau90] J. E. Vaughan, Small uncountable cardinals and topology, with an appendix by S. Shelah, in: Open Problems in Topology, North-Holland, Amsterdam, 1990, 195-218.

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.