A converse of the Arsenin–Kunugui theorem on Borel sets with σ-compact sections
Fundamenta Mathematicae (2000)
- Volume: 165, Issue: 3, page 191-202
- ISSN: 0016-2736
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] C. Dellacherie, Un cours sur les ensembles analytiques, in: Analytic Sets, Academic Press, London, 1980, 183-316.
- [2] A. S. Kechris, Classical Descriptive Set Theory, Springer, New York, 1995.
- [3] K. Kuratowski, Topology, Vol. I, Academic Press, New York, 1966.
- [4] A. Louveau and J. Saint-Raymond, Borel classes and closed games, Trans. Amer. Math. Soc. 304 (1987), 431-467. Zbl0655.04001
- [5] R. D. Mauldin, Bimeasurable functions, Proc. Amer. Math. Soc. 83 (1981), 369-370. Zbl0483.54026
- [6] R. Pol, Some remarks about measurable parametrizations, ibid. 93 (1985), 628-632. Zbl0609.28006
- [7] R. Purves, Bimeasurable functions, Fund. Math. 58 (1966), 149-158. Zbl0143.07101
- [8] J. Saint-Raymond, Boréliens à coupes , Bull. Soc. Math. France 104 (1976), 389-400.
- [9] S. M. Srivastava, A Course on Borel Sets, Springer, New York, 1998. Zbl0903.28001
- [10] A. D. Taĭmanov, On closed mappings I, Mat. Sb. 36 (1955), 349-352 (in Russian).