Descriptive properties of mappings between nonseparable Luzin spaces
Czechoslovak Mathematical Journal (2007)
- Volume: 57, Issue: 1, page 201-224
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topHolický, Petr, and Komínek, Václav. "Descriptive properties of mappings between nonseparable Luzin spaces." Czechoslovak Mathematical Journal 57.1 (2007): 201-224. <http://eudml.org/doc/31125>.
@article{Holický2007,
abstract = {We relate some subsets $G$ of the product $X\times Y$ of nonseparable Luzin (e.g., completely metrizable) spaces to subsets $H$ of $\mathbb \{N\}^\{\mathbb \{N\}\}\times Y$ in a way which allows to deduce descriptive properties of $G$ from corresponding theorems on $H$. As consequences we prove a nonseparable version of Kondô’s uniformization theorem and results on sets of points $y$ in $Y$ with particular properties of fibres $f^\{-1\}(y)$ of a mapping $f\: X\rightarrow Y$. Using these, we get descriptions of bimeasurable mappings between nonseparable Luzin spaces in terms of fibres.},
author = {Holický, Petr, Komínek, Václav},
journal = {Czechoslovak Mathematical Journal},
keywords = {nonseparable metric spaces; Luzin spaces; $\sigma $-discrete network; uniformization; bimeasurable maps; nonseparable metric spaces; Luzin spaces; -discrete network; uniformization; bimeasurable maps},
language = {eng},
number = {1},
pages = {201-224},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Descriptive properties of mappings between nonseparable Luzin spaces},
url = {http://eudml.org/doc/31125},
volume = {57},
year = {2007},
}
TY - JOUR
AU - Holický, Petr
AU - Komínek, Václav
TI - Descriptive properties of mappings between nonseparable Luzin spaces
JO - Czechoslovak Mathematical Journal
PY - 2007
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 57
IS - 1
SP - 201
EP - 224
AB - We relate some subsets $G$ of the product $X\times Y$ of nonseparable Luzin (e.g., completely metrizable) spaces to subsets $H$ of $\mathbb {N}^{\mathbb {N}}\times Y$ in a way which allows to deduce descriptive properties of $G$ from corresponding theorems on $H$. As consequences we prove a nonseparable version of Kondô’s uniformization theorem and results on sets of points $y$ in $Y$ with particular properties of fibres $f^{-1}(y)$ of a mapping $f\: X\rightarrow Y$. Using these, we get descriptions of bimeasurable mappings between nonseparable Luzin spaces in terms of fibres.
LA - eng
KW - nonseparable metric spaces; Luzin spaces; $\sigma $-discrete network; uniformization; bimeasurable maps; nonseparable metric spaces; Luzin spaces; -discrete network; uniformization; bimeasurable maps
UR - http://eudml.org/doc/31125
ER -
References
top- 10.1090/S0002-9904-1970-12584-8, Bull. Amer. Math. Soc. 76 (1970), 1112–1117. (1970) MR0265539DOI10.1090/S0002-9904-1970-12584-8
- 10.4064/fm-117-3-165-185, Fund. Math. 117 (1983), 165–185. (1983) MR0719837DOI10.4064/fm-117-3-165-185
- On characterizing non-separable analytic and extended Borel sets as types of continuous images, Proc. London Math. Soc. 28 (1974), 683–699. (1974) Zbl0313.54044MR0362269
- Descriptive sets and the topology of nonseparable Banach spaces, Serdica Math. J. 27 (2001), 1–66. (2001) Zbl0982.46012MR1828793
- Descriptive topology, Recent Progress in General Topology, M. Hušek and J. van Mill (eds.), North-Holland, Amsterdam, London, New York, Tokyo, 1992, pp. 275–315. (1992) Zbl0805.54036MR1229129
- Čech analytic and almost -descriptive spaces, Czech. Math. J. 43 (1993), 451–466. (1993) MR1249614
- Luzin theorems for scattered--analytic spaces and Borel measures on them, Atti Sem. Mat. Fis. Univ. Modena XLIV (1996), 395–413. (1996) MR1428772
- 10.1023/A:1013769030260, Czech. Math. J. 51 (2001), 791–818. (2001) MR1864043DOI10.1023/A:1013769030260
- On projections of nonseparable Souslin and Borel sets along separable spaces, Acta Univ. Carolin. Math. Phys. 42 (2001), 33–41. (2001) MR1900390
- Internal descriptions of absolute Borel classes, Topology Appl. 141 (2004), 87–104. (2004) MR2058682
- A converse of the Arsenin-Kunugui theorem on Borel sets with -compact sections, Fund. Math. 165 (2000), 191–202. (2000) MR1805424
- 10.1007/BF02392351, Acta Math. 149 (1982), 87–125. (1982) MR0674168DOI10.1007/BF02392351
- Borel-measurable selectors for compact-valued mappings in the non-separable case, Bull. Pol. Acad. Sci. Math. 23 (1975), 1043–1050. (1975) MR0410657
- Classical Descriptive Set Theory, Springer, New York etc., 1995. (1995) Zbl0819.04002MR1321597
- A remark on the uniformization in metric spaces, Acta Univ. Carolin. Math. Phys. 40 (1999), 65–74. (1999) MR1751542
- 10.4064/fm-58-2-149-157, Fund. Math. 58 (1966), 149–157. (1966) Zbl0143.07101MR0199339DOI10.4064/fm-58-2-149-157
- 10.1007/BF02394605, Acta Math. 120 (1968), 1–52. (1968) MR0237733DOI10.1007/BF02394605
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.