Dichotomies pour les espaces de suites réelles

Pierre Casevitz

Fundamenta Mathematicae (2000)

  • Volume: 165, Issue: 3, page 249-284
  • ISSN: 0016-2736

Abstract

top
There is a general conjecture, the dichotomy (C) about Borel equivalence relations E: (i) E is Borel reducible to the equivalence relation E G X where X is a Polish space, and a Polish group acting continuously on X; or (ii) a canonical relation E 1 is Borel reducible to E. (C) is only proved for special cases as in [So].  In this paper we make a contribution to the study of (C): a stronger conjecture is true for hereditary subspaces of the Polish space ω of real sequences, i.e., subspaces such that [ y = ( y n ) n X and ∀n, | x n | | y n | ] x = ( x n ) n X . If such an X is analytic as a subset of ω , then either X is Polishable as a vector subspace, or X admits a subspace strongly isomorphic to the space c 00 of finite sequences, or to the space of bounded sequences.  When X is Polishable, the metrics have a very simple form as in the case studied in [So], which allows us to study precisely the properties of those X’s

How to cite

top

Casevitz, Pierre. "Dichotomies pour les espaces de suites réelles." Fundamenta Mathematicae 165.3 (2000): 249-284. <http://eudml.org/doc/212469>.

@article{Casevitz2000,
author = {Casevitz, Pierre},
journal = {Fundamenta Mathematicae},
keywords = {Borel complexity; subspaces of real sequences; topology of subspaces of real sequences; Polishable spaces; dichotomy theorems; Borel equivalence relations; space of real sequences; Polishable space; Polish space; Polish group},
language = {fre},
number = {3},
pages = {249-284},
title = {Dichotomies pour les espaces de suites réelles},
url = {http://eudml.org/doc/212469},
volume = {165},
year = {2000},
}

TY - JOUR
AU - Casevitz, Pierre
TI - Dichotomies pour les espaces de suites réelles
JO - Fundamenta Mathematicae
PY - 2000
VL - 165
IS - 3
SP - 249
EP - 284
LA - fre
KW - Borel complexity; subspaces of real sequences; topology of subspaces of real sequences; Polishable spaces; dichotomy theorems; Borel equivalence relations; space of real sequences; Polishable space; Polish space; Polish group
UR - http://eudml.org/doc/212469
ER -

References

top
  1. [C] P. Casevitz, Espaces héréditaires complètement métrisables, Fund. Math., à paraître. 
  2. [K] A. Kechris, Classical Descriptive Set Theory, Springer, New York, 1995. Zbl0819.04002
  3. [K-L] A. S. Kechris and A. Louveau, The classification of hypersmooth Borel equivalence relations, J. Amer. Math. Soc. 10 (1997), 215-242. Zbl0865.03039
  4. [K-L-W] A. S. Kechris, A. Louveau and W. H. Woodin, The structure of σ-ideals of compact sets, Trans. Amer. Math. Soc. 301 (1987), 263-288. Zbl0633.03043
  5. [M] Y. N. Moschovakis, Descriptive Set Theory, North-Holland, Amsterdam, 1980. 
  6. [Sc] H. H. Schaefer, Banach Lattices and Positive Operators, Springer, New York, 1974. Zbl0296.47023
  7. [So] S. Solecki, Analytic ideals and their applications, Ann. Pure Appl. Logic 99 (1999), 51-72. Zbl0932.03060
  8. [T] M. Talagrand, Compacts de fonctions mesurables et filtres non mesurables, Studia Math. 67 (1980), 13-43. Zbl0435.46023

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.