# Dichotomies pour les espaces de suites réelles

Fundamenta Mathematicae (2000)

- Volume: 165, Issue: 3, page 249-284
- ISSN: 0016-2736

## Access Full Article

top## Abstract

top## How to cite

topCasevitz, Pierre. "Dichotomies pour les espaces de suites réelles." Fundamenta Mathematicae 165.3 (2000): 249-284. <http://eudml.org/doc/212469>.

@article{Casevitz2000,

author = {Casevitz, Pierre},

journal = {Fundamenta Mathematicae},

keywords = {Borel complexity; subspaces of real sequences; topology of subspaces of real sequences; Polishable spaces; dichotomy theorems; Borel equivalence relations; space of real sequences; Polishable space; Polish space; Polish group},

language = {fre},

number = {3},

pages = {249-284},

title = {Dichotomies pour les espaces de suites réelles},

url = {http://eudml.org/doc/212469},

volume = {165},

year = {2000},

}

TY - JOUR

AU - Casevitz, Pierre

TI - Dichotomies pour les espaces de suites réelles

JO - Fundamenta Mathematicae

PY - 2000

VL - 165

IS - 3

SP - 249

EP - 284

LA - fre

KW - Borel complexity; subspaces of real sequences; topology of subspaces of real sequences; Polishable spaces; dichotomy theorems; Borel equivalence relations; space of real sequences; Polishable space; Polish space; Polish group

UR - http://eudml.org/doc/212469

ER -

## References

top- [C] P. Casevitz, Espaces héréditaires complètement métrisables, Fund. Math., à paraître.
- [K] A. Kechris, Classical Descriptive Set Theory, Springer, New York, 1995. Zbl0819.04002
- [K-L] A. S. Kechris and A. Louveau, The classification of hypersmooth Borel equivalence relations, J. Amer. Math. Soc. 10 (1997), 215-242. Zbl0865.03039
- [K-L-W] A. S. Kechris, A. Louveau and W. H. Woodin, The structure of σ-ideals of compact sets, Trans. Amer. Math. Soc. 301 (1987), 263-288. Zbl0633.03043
- [M] Y. N. Moschovakis, Descriptive Set Theory, North-Holland, Amsterdam, 1980.
- [Sc] H. H. Schaefer, Banach Lattices and Positive Operators, Springer, New York, 1974. Zbl0296.47023
- [So] S. Solecki, Analytic ideals and their applications, Ann. Pure Appl. Logic 99 (1999), 51-72. Zbl0932.03060
- [T] M. Talagrand, Compacts de fonctions mesurables et filtres non mesurables, Studia Math. 67 (1980), 13-43. Zbl0435.46023

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.