On what I do not understand (and have something to say): Part I

Saharon Shelah

Fundamenta Mathematicae (2000)

  • Volume: 166, Issue: 1-2, page 1-82
  • ISSN: 0016-2736

Abstract

top
This is a non-standard paper, containing some problems in set theory I have in various degrees been interested in. Sometimes with a discussion on what I have to say; sometimes, of what makes them interesting to me, sometimes the problems are presented with a discussion of how I have tried to solve them, and sometimes with failed tries, anecdotes and opinions. So the discussion is quite personal, in other words, egocentric and somewhat accidental. As we discuss many problems, history and side references are erratic, usually kept to a minimum ("see ..." means: see the references there and possibly the paper itself). The base were lectures in Rutgers, Fall '97, and reflect my knowledge then. The other half, [122], concentrating on model theory, will subsequently appear. I thank Andreas Blass and Andrzej Rosłanowski for many helpful comments.

How to cite

top

Shelah, Saharon. "On what I do not understand (and have something to say): Part I." Fundamenta Mathematicae 166.1-2 (2000): 1-82. <http://eudml.org/doc/212475>.

@article{Shelah2000,
abstract = {This is a non-standard paper, containing some problems in set theory I have in various degrees been interested in. Sometimes with a discussion on what I have to say; sometimes, of what makes them interesting to me, sometimes the problems are presented with a discussion of how I have tried to solve them, and sometimes with failed tries, anecdotes and opinions. So the discussion is quite personal, in other words, egocentric and somewhat accidental. As we discuss many problems, history and side references are erratic, usually kept to a minimum ("see ..." means: see the references there and possibly the paper itself). The base were lectures in Rutgers, Fall '97, and reflect my knowledge then. The other half, [122], concentrating on model theory, will subsequently appear. I thank Andreas Blass and Andrzej Rosłanowski for many helpful comments.},
author = {Shelah, Saharon},
journal = {Fundamenta Mathematicae},
keywords = {set theory; cardinal arithmetic; pcf theory; forcing; iterated forcing; large continuum; nep; nicely definable forcing; combinatorial set theory; Boolean algebras; set-theoretic algebra; partition calculus; Ramsey theory},
language = {eng},
number = {1-2},
pages = {1-82},
title = {On what I do not understand (and have something to say): Part I},
url = {http://eudml.org/doc/212475},
volume = {166},
year = {2000},
}

TY - JOUR
AU - Shelah, Saharon
TI - On what I do not understand (and have something to say): Part I
JO - Fundamenta Mathematicae
PY - 2000
VL - 166
IS - 1-2
SP - 1
EP - 82
AB - This is a non-standard paper, containing some problems in set theory I have in various degrees been interested in. Sometimes with a discussion on what I have to say; sometimes, of what makes them interesting to me, sometimes the problems are presented with a discussion of how I have tried to solve them, and sometimes with failed tries, anecdotes and opinions. So the discussion is quite personal, in other words, egocentric and somewhat accidental. As we discuss many problems, history and side references are erratic, usually kept to a minimum ("see ..." means: see the references there and possibly the paper itself). The base were lectures in Rutgers, Fall '97, and reflect my knowledge then. The other half, [122], concentrating on model theory, will subsequently appear. I thank Andreas Blass and Andrzej Rosłanowski for many helpful comments.
LA - eng
KW - set theory; cardinal arithmetic; pcf theory; forcing; iterated forcing; large continuum; nep; nicely definable forcing; combinatorial set theory; Boolean algebras; set-theoretic algebra; partition calculus; Ramsey theory
UR - http://eudml.org/doc/212475
ER -

References

top
  1. [1] U. Abraham, Aronszajn trees on 2 and 3 , Ann. Pure Appl. Logic 24 (1983), 213-230. 
  2. [2] U. Abraham, M. Rubin and S. Shelah, On the consistency of some partition theorems for continuous colorings, and the structure of 1 -dense real order types, Ann. Pure Appl. Logic 29 (1985), 123-206. Zbl0585.03019
  3. [3] U. Abraham and S. Shelah, Isomorphism types of Aronszajn trees, Israel J. Math. 50 (1985), 75-113. Zbl0566.03032
  4. [4] U. Abraham and S. Todorčević, Partition properties of ω 1 compatible with CH, Fund. Math. 152 (1997), 165-181. Zbl0879.03015
  5. [5] M. Ajtai, The complexity of the pigeonhole principle, Combinatorica 14 (1994), 417-433. Zbl0811.03042
  6. [6] U. Avraham [U. Abraham], K. J. Devlin and S. Shelah, The consistency with CH of some consequences of Martin’s axiom plus 2 0 > 1 , Israel J. Math. 31 (1978), 19-33. Zbl0382.03040
  7. [7] T. Bartoszyński and H. Judah, Set Theory: On the Structure of the Real Line, A K Peters, Wellesley, MA, 1995. Zbl0834.04001
  8. [8] T. Bartoszyński, A. Rosłanowski and S. Shelah, After all, there are some inequalities which are provable in ZFC, math.LO/9711222; J. Symbolic Logic 65 (2000), 803-816. Zbl0960.03042
  9. [9] T. Bartoszyński, A. Rosłanowski and S. Shelah, Adding one random real, ibid. 61 (1996), 80-90;math.LO/9406229. Zbl0859.03023
  10. [10] J. E. Baumgartner, Decomposition of embedding of trees, Notices Amer. Math. Soc. 17 (1970), 967. 
  11. [11] J. E. Baumgartner, All 1 -dense sets of reals can be isomorphic, Fund. Math. 79 (1973), 101-106. Zbl0274.02037
  12. [12] J. E. Baumgartner, Ultrafilters on ω, J. Symbolic Logic 60 (1995), 624-639. Zbl0834.04005
  13. [13] J. Baumgartner, A. Hajnal and S. Todorčević, Extensions of the Erdős-Rado Theorems, in: Finite and Infinite Combinatorics in Set Theory and Logic, Kluwer, 1993, 1-18. Zbl0846.03021
  14. [14] S. Ben David, On Shelah's compactness of cardinals, Israel J. Math. 31 (1978), 34-56 and 394. Zbl0384.03036
  15. [16] A. Blass and S. Shelah, Ultrafilters with small generating sets, Israel J. Math. 65 (1989), 259-271. Zbl0681.03033
  16. [17] R. Bonnet and D. Monk, Handbook of Boolean Algebras, Vols. 1-3, North-Holland, 1989. 
  17. [18] J. Brendle and S. Shelah, Ultrafilters on ω--their ideals and their cardinal characteristics, Trans. Amer. Math. Soc. 351 (1999), 2643-2674; math.LO/9710217. Zbl0927.03073
  18. [19] T. J. Carlson, Strong measure zero and strongly meager sets, Proc. Amer. Math. Soc. 118 (1993), 577-586. Zbl0787.03037
  19. [20] K. Ciesielski, Set theoretic real analysis, J. Appl. Anal. 3 (1997), 143-190. Zbl0901.26001
  20. [21] K. Ciesielski and S. Shelah, Category analog of sub-measurability problem, ibid., to appear; math.LO/9905147. 
  21. [22] J. Cummings, M. Džamonja and S. Shelah, A consistency result on weak reflection, Fund. Math. 148 (1995), 91-100; math.LO/9504221. Zbl0830.03024
  22. [23] J. Cummings and M. Foreman, The tree property, Adv. Math. 133 (1998), 1-32. Zbl0949.03039
  23. [25] J. Cummings and S. Shelah, Cardinal invariants above the continuum, Ann. Pure Appl. Logic 75 (1995), 251-268; math.LO/9509228. Zbl0835.03013
  24. [26] K. J. Devlin and S. Shelah, A weak version of ◊ which follows from 2 0 < 2 1 , Israel J. Math. 29 (1978), 239-247. Zbl0403.03040
  25. [27] T. Dodd and R. B. Jensen, The covering lemma for K, Ann. Math. Logic 22 (1982), 1-30. Zbl0492.03014
  26. [30] M. Džamonja and S. Shelah, On squares, outside guessing of clubs and I < f [ λ ] , Fund. Math. 148 (1995), 165-198; math.LO/9510216. Zbl0839.03031
  27. [31] M. Džamonja and S. Shelah, Saturated filters at successors of singulars, weak reflection and yet another weak club principle, Ann. Pure Appl. Logic 79 (1996), 289-316; math.LO/9601219. Zbl0874.03059
  28. [32] P. C. Eklof and A. Mekler, Almost Free Modules; Set Theoretic Methods, North-Holland Library, 1990. Zbl0718.20027
  29. [33] P. Erdős and A. Hajnal, Unsolved problems in set theory, in: Axiomatic Set Theory, Proc. Sympos. Pure Math., 13, part I, Providence, RI, 1971, Amer. Math. Soc., 17-18. Zbl0228.04001
  30. [34] P. Erdős, A. Hajnal, A. Maté and R. Rado, Combinatorial Set Theory: Partition Relations for Cardinals, Stud. Logic Found. Math. 106, North-Holland, Amsterdam, 1984. Zbl0573.03019
  31. [35] W. G. Fleissner and S. Shelah, Collectionwise Hausdorff: incompactness at singulars, Topology Appl. 31 (1989), 101-107. Zbl0659.54016
  32. [36] M. Foreman and H. Woodin, The generalized continuum hypothesis can fail everywhere, Ann. Math. 133 (1991), 1-36. Zbl0718.03040
  33. [38] D. Fremlin, Real-valued-measurable cardinals, in: Set Theory of the Reals, Israel Math. Conf. Proc. 6, Bar-Ilan Univ., Ramat Gan, 1993, 151-304. 
  34. [39] L. Fuchs, Infinite Abelian Groups, Vols. I, II, Academic Press, New York, 1970, 1973. 
  35. [40] S. Garcia-Ferreira and W. Just, Two examples of relatively pseudocompact spaces, Questions Answers Gen. Topology 17 (1999), 35-45. Zbl0943.54025
  36. [41] M. Gitik, All uncountable cardinals can be singular, Israel J. Math. 35 (1980), 61-88. Zbl0439.03036
  37. [47] M. Gitik and S. Shelah, Less saturated ideals, Proc. Amer. Math. Soc. 125 (1997), 1523-1530; math.LO/9503203. Zbl0864.03031
  38. [48] M. Goldstern and S. Shelah. Many simple cardinal invariants, Arch. Math. Logic 32 (1993), 203-221; math.LO/9205208. Zbl0786.03030
  39. [49] R. Graham, B. L. Rothschild and J. Spencer, Ramsey Theory, Wiley, New York, 1980. 
  40. [50] J. Gregory, Higher Souslin trees and the generalized continuum hypothesis, J. Symbolic Logic 41(3) (1976), 663-671. Zbl0347.02044
  41. [51] R. Grossberg and S. Shelah, On the structure of E x t p ( G , 𝐙 ) , J. Algebra 121 (1989), 117-128. See also [52] below. Zbl0668.20044
  42. [52] R. Grossberg and S. Shelah, On cardinalities in quotients of inverse limits of groups, Math. Japonica 47 (1998), 189-197. Zbl0911.20040
  43. [53] A. Hajnal, True embedding partition relations, in: Finite and Infinite Combinatorics in Sets and Logic, Kluwer, 1993, 135-152. 
  44. [54] A. Hajnal and P. Hamburger, Halmazelmélet [Set Theory], Tankönyvkiaó Vállalat, Budapest, 1983 (in Hungarian). 
  45. [55] A. Hajnal, I. Juhász and Z. Szentmiklóssy, On the structure of CCC partial orders, Algebra Universalis, to appear. Zbl0938.06001
  46. [56] J. D. Hamkins, Every group has a terminating transfinite automorphism tower, Proc. Amer. Math. Soc. 126 (1998), 3223-3226. Zbl0904.20027
  47. [57] L. A. Harrington, M. D. Morley, A. Ščedrov and S. G. Simpson (eds.), Harvey Friedman's Research on the Foundations of Mathematics, Stud. Logic Found. Math. 117, North-Holland, 1985. Zbl0588.03001
  48. [58] W. Hodges, For singular λ, λ-free implies free, Algebra Universalis 12 (1981), 205-220. 
  49. [59] J. Ihoda [H. Judah] and S. Shelah, Souslin forcing, J. Symbolic Logic 53 (1988), 1188-1207. 
  50. [60] T. Jech and S. Shelah, Possible pcf algebras, ibid. 61 (1996), 313-317; math.LO/9412208. Zbl0878.03036
  51. [61] H. Judah and S. Shelah, MA(σ-centered): Cohen reals, strong measure zero sets and strongly meager sets, Israel J. Math. 68 (1989), 1-17. Zbl0693.03032
  52. [62] H. Judah and S. Shelah, Baire Property and Axiom of Choice, Israel J. Math. 84 (1993), 435-450; math.LO/9211213. Zbl0797.03049
  53. [64] I. Juhász, Cardinal functions, in: Recent Progress in General Topology (Prague, 1991), North-Holland, Amsterdam, 1992, 417-441. 
  54. [65] I. Juhász and S. Shelah, How large can a hereditarily separable or hereditarily Lindelöf space be?, Israel J. Math. 53 (1986), 355-364. Zbl0607.54002
  55. [66] W. Just, A. R. D. Mathias, K. Prikry and P. Simon, On the existence of large p-ideals, J. Symbolic Logic 55 (1990), 457-465. Zbl0715.04002
  56. [67] W. Just, S. Shelah and S. Thomas, The automorphism tower problem III: Closed groups of uncountable degree, Adv. Math., accepted. 
  57. [68] A. S. Kechris and S. Solecki, Approximation of analytic by Borel sets and definable countable chain conditions, Israel J. Math. 89 (1995), 343-356. Zbl0827.54023
  58. [69] J. Ketonen, On the existence of P-points in the Stone-Čech compactification of integers, Fund. Math. 92 (1976), 91-94. Zbl0339.54035
  59. [71] M. Kojman and S. Shelah, The universality spectrum of stable unsuperstable theories, Ann. Pure Appl. Logic 58 (1992), 57-72; math.LO/9201253. Zbl0769.03019
  60. [72] P. Komjáth, On second-category sets, Proc. Amer. Math. Soc. 107 (1989), 653-654. Zbl0672.28002
  61. [73] D. W. Kueker, Countable approximations and Löwenheim-Skolem theorems, Ann. Math. Logic 11 (1977), 57-103. Zbl0364.02009
  62. [75] K. Kunen, Large homogeneous compact spaces, in: Open Problems in Topology, Elsevier, 1990, 261-270. 
  63. [76] R. Laver, On the consistency of Borel's conjecture, Acta Math. 137 (1976), 151-169. Zbl0357.28003
  64. [77] M. Magidor and S. Shelah, Length of Boolean algebras and ultraproducts, Math. Japonica 48 (1998), 301-307; math.LO/9805145. Zbl0931.03061
  65. [78] A. R. D. Mathias, 0 and the p-point problem, in: Higher Set Theory (Oberwolfach, 1977), Lecture Notes in Math. 669, Springer, Berlin, 1978, 375-383. 
  66. [79] A. H. Mekler, A. Rosłanowski and S. Shelah, On the p-rank of Ext, Israel J. Math. 112 (1999), 327-356; math.LO/9806165 Zbl0942.20037
  67. [81] A. H. Mekler and S. Shelah, Almost free algebras, Israel J. Math. 89 (1995), 237-259; math.LO/9408213. Zbl0821.08008
  68. [82] A. H. Mekler, S. Shelah and O. Spinas, The essentially free spectrum of a variety, Israel J. Math. 93 (1996), 1-8; math.LO/9411234. Zbl0845.08005
  69. [83] A. W. Miller, Arnie Miller's problem list, in: Set Theory of the Reals, Israel Math. Conf. Proc. 6, Bar-Ilan Univ., Ramat Gan, 1993, 645-654. Zbl0828.03017
  70. [84] D. Monk, Cardinal Invariants of Boolean Algebras, Progr. Math. 142, Birkhäuser, Basel, 1996. Zbl0849.03038
  71. [85] J. Roitman, Adding a random or Cohen real: topological consequences and the effect on Martin's axiom, Fund. Math. 103 (1979), 47-60. Zbl0442.03034
  72. [92] A. Rosłanowski and S. Shelah, Norms on possibilities I: forcing with trees and creatures, Mem. Amer. Math. Soc. 671 (1999); math.LO/9807172. Zbl0940.03059
  73. [93] M. Rubin and S. Shelah, Combinatorial problems on trees: partitions, Δ-systems and large free subtrees, Ann. Pure Appl. Logic 33 (1987), 43-81. Zbl0654.04002
  74. [94] G. Sageev and S. Shelah, Noetherian ring with free additive groups, Abstracts Amer. Math. Soc. 7 (1986), 369. 
  75. [96] J. D. Sharp and S. Thomas, Unbounded families and the cofinality of the infinite symmetric group, Arch. Math. Logic 34 (1995), 33-45. Zbl0818.03027
  76. [107] S. Shelah, Few non-minimal types and non-structure, in: Proc. 11 Internat. Congress of Logic, Methodology and Philosophy of Science (Krokow, 1999), Kluwer, to appear; math.LO/9906023. 
  77. [112] S.Shelah, More constructions for Boolean algebras, Arch. Math. Logic,submitted; math.LO/9605235. 
  78. [122] S. Shelah, On what I do not understand (and have something to say), model theory, Math. Japonica, accepted; math.LO/9910158. 
  79. [143] S. Shelah, Classification theory for nonelementary classes, I. The number of uncountable models of ψ L ω 1 , ω . Part B, Israel J. Math. 46 (1983), 241-273. 
  80. [148] S. Shelah, More on proper forcing, ibid. 49 (1984), 1034-1038. Zbl0577.03026
  81. [166] S. Shelah, Cardinal Arithmetic, Oxford Logic Guides 29, Oxford Univ. Press, 1994. 
  82. [168] S. Shelah, How special are Cohen and random forcings, i.e. Boolean algebras of the family of subsets of reals modulo meagre or null, Israel J. Math. 88 (1994), 159-174; math.LO/9303208. 
  83. [179] S. Shelah, Note on ω-nw-nep forcing notions, preprint. 
  84. [180] S. Shelah, J. Saxl and S. Thomas, Infinite products of finite simple groups, Trans. Amer. Math. Soc. 348 (1996), 4611-4641; math.IG/9605202. Zbl0867.20026
  85. [181] S. Shelah and O. Spinas, On incomparability and related cardinal functions on ultraproducts of Boolean algebras, in preparation; math.LO/9903116. Zbl0971.03048
  86. [183] S. Shelah and L. Stanley, A theorem and some consistency results in partition calculus, Ann. Pure Appl. Logic 36 (1987), 119-152. Zbl0625.03029
  87. [184] S. Shelah and J. Steprāns, Somewhere trivial automorphisms, J. London Math. Soc. 49 (1994), 569-580; math.LO/9308214. Zbl0817.54005
  88. [185] S. Shelah and J. Steprāns, Martin's axiom is consistent with the existence of nowhere trivial automorphisms, Proc. Amer. Math. Soc., submitted. Zbl0993.03064
  89. [186] S. Shelah and S. Thomas, The cofinality spectrum of the infinite symmetric group, J. Symbolic Logic 62 (1997), 902-916; math.LO/9412230. Zbl0889.03037
  90. [187] S. Shelah and J. Zapletal, Canonical models for 1 combinatorics, Ann. Pure Appl. Logic 98 (1999), 217-259; math.LO/9806166. Zbl0935.03055
  91. [189] S. Solecki, Analytic ideals, Bull. Symbolic Logic 2 (1996), 339-348. Zbl0862.04002
  92. [190] R. M. Solovay, Real valued measurable cardinals, in: Axiomatic Set Theory, Proc. Symposia Pure Math. 13, part 1, Providence, RI, Amer. Math. Soc. 1971, 397-428. 
  93. [191] S. G. Simpson (moderator), E-mail list for discussing foundations of mathematics, http://www.math.psu.edu/simpson/fom/. 
  94. [192] J. Steprāns and S. W. Watson, Homeomorphisms of manifolds with prescribed behaviour on large dense sets, Bull. London Math. Soc. 19 (1987), 305-310. Zbl0637.03051
  95. [193] S. Thomas, The cofinalities of the infinite-dimensional classical groups, J. Algebra 179 (1996), 704-719. Zbl0846.20005
  96. [194] S. Todorčević, Partition Problems in Topology, Contemp. Math. 84, Amer. Math. Soc., Providence, RI, 1989. Zbl0659.54001
  97. [195] J. van Mill, An introduction to βω, in: Handbook of Set-Theoretic Topology, North-Holland, Amsterdam, 1984, 503-567. 
  98. [196] B. Veličković, Applications of the open coloring axiom, in: Set Theory of the Continuum (Berkeley, CA, 1989), Math. Sci. Res. Inst. Publ. 26, Springer, 1992, 137-154. Zbl0785.03032
  99. [197] S. W. Williams, Box products, in: Handbook of Set-Theoretic Topology, North-Holland, Amsterdam, 1984, 169-200. 
  100. [198] H. Woodin, The Axiom of Determinacy, Forcing Axioms and the Nonstationary Ideal, de Gruyter Ser. Logic Appl. 1, de Gruyter, in press. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.