Partition properties of ω1 compatible with CH
Fundamenta Mathematicae (1997)
- Volume: 152, Issue: 2, page 165-181
- ISSN: 0016-2736
Access Full Article
topAbstract
topHow to cite
topAbraham, Uri, and Todorčević, Stevo. "Partition properties of ω1 compatible with CH." Fundamenta Mathematicae 152.2 (1997): 165-181. <http://eudml.org/doc/212204>.
@article{Abraham1997,
abstract = {A combinatorial statement concerning ideals of countable subsets of ω is introduced and proved to be consistent with the Continuum Hypothesis. This statement implies the Suslin Hypothesis, that all (ω, ω*)-gaps are Hausdorff, and that every coherent sequence on ω either almost includes or is orthogonal to some uncountable subset of ω.},
author = {Abraham, Uri, Todorčević, Stevo},
journal = {Fundamenta Mathematicae},
keywords = {Continuum hypothesis; Suslin hypothesis; Hausdorff gaps; ideal; Suslin trees; coherent sequence; iterated forcing; consistency},
language = {eng},
number = {2},
pages = {165-181},
title = {Partition properties of ω1 compatible with CH},
url = {http://eudml.org/doc/212204},
volume = {152},
year = {1997},
}
TY - JOUR
AU - Abraham, Uri
AU - Todorčević, Stevo
TI - Partition properties of ω1 compatible with CH
JO - Fundamenta Mathematicae
PY - 1997
VL - 152
IS - 2
SP - 165
EP - 181
AB - A combinatorial statement concerning ideals of countable subsets of ω is introduced and proved to be consistent with the Continuum Hypothesis. This statement implies the Suslin Hypothesis, that all (ω, ω*)-gaps are Hausdorff, and that every coherent sequence on ω either almost includes or is orthogonal to some uncountable subset of ω.
LA - eng
KW - Continuum hypothesis; Suslin hypothesis; Hausdorff gaps; ideal; Suslin trees; coherent sequence; iterated forcing; consistency
UR - http://eudml.org/doc/212204
ER -
References
top- [0] U. Abraham, K. J. Devlin and S. Shelah, The consistency with CH of some consequences of Martin's axiom plus non-CH, Israel J. Math. 31 (1978), 19-33. Zbl0382.03040
- [1] W. W. Comfort and S. Negrepontis, The Theory of Ultrafilters, Springer, Berlin, 1974.
- [2] H. G. Dales and W. H. Woodin, An Introduction to Independence for Analysts, London Math. Soc. Lecture Note Ser. 115, Cambridge University Press, 1987.
- [3] K. J. Devlin and H. Johnsbraten, The Souslin Problem, Lecture Notes in Math. 405, Springer, 1974. Zbl0289.02043
- [4] A. Dow, PFA and ω*, Topology Appl. 28 (1988), 127-140.
- [5] F. Galvin, On Gruenhage's generalization of first countable spaces II, Notices Amer. Math. Soc. 24 (1977), A-257.
- [6] F. Galvin, letters of November 12, 1980 and May 18, 1981.
- [7] F. Hausdorff, Die Graduierung nach dem Endverlauf, Abh. König. Sächs. Gesell. Wiss. Math.-Phys. Kl. 31 (1909), 296-334. Zbl40.0446.02
- [8] F. Hausdorff, Summen von Mengen, Fund. Math. 26 (1936), 241-255.
- [9] K. Kunen, (κ,λ*) gaps under MA, note of August 1976.
- [10] M. Magidor and J. Malitz, Compact extensions of L(Q), Ann. Math. Logic 11 (1977), 217-261.
- [11] J. van Mill and G. M. Reed, Open Problems in Topology, North-Holland, Amsterdam, 1990. Zbl0718.54001
- [12] A. Ostaszewski, On countably compact perfectly normal spaces, J. London Math. Soc. (2) 14 (1976), 505-516. Zbl0348.54014
- [13] S. Shelah, Proper Forcing, Lecture Notes in Math. 940, Springer, 1982.
- [14] S. Todorčević, Forcing positive partition relations, Trans. Amer. Math. Soc. 280 (1983), 703-720. Zbl0532.03023
- [15] S. Todorčević, Partitioning pairs of countable ordinals, Acta Math. 159 (1987), 261-294. Zbl0658.03028
- [16] S. Todorčević, Partition Problems in Topology, Contemp. Math. 84, Amer. Math. Soc., Providence, 1989. Zbl0659.54001
- [17] S. Todorčević, Some applications of S and L combinatorics, Ann. New York Acad. Sci. 705 (1993), 130-167.
- [18] N. M. Warren, Properties of Stone-Čech compactifications of discrete spaces, Proc. Amer. Math. Soc. 33 (1972), 599-606. Zbl0241.54016
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.