Harmonic functions and mean value theorems

Ivan Netuka

Časopis pro pěstování matematiky (1975)

  • Volume: 100, Issue: 4, page 391-409
  • ISSN: 0528-2195

How to cite

top

Netuka, Ivan. "Harmonické funkce a věty o průměru." Časopis pro pěstování matematiky 100.4 (1975): 391-409. <http://eudml.org/doc/21259>.

@article{Netuka1975,
author = {Netuka, Ivan},
journal = {Časopis pro pěstování matematiky},
language = {cze},
number = {4},
pages = {391-409},
publisher = {Mathematical Institute of the Czechoslovak Academy of Sciences},
title = {Harmonické funkce a věty o průměru},
url = {http://eudml.org/doc/21259},
volume = {100},
year = {1975},
}

TY - JOUR
AU - Netuka, Ivan
TI - Harmonické funkce a věty o průměru
JO - Časopis pro pěstování matematiky
PY - 1975
PB - Mathematical Institute of the Czechoslovak Academy of Sciences
VL - 100
IS - 4
SP - 391
EP - 409
LA - cze
UR - http://eudml.org/doc/21259
ER -

References

top
  1. M. A. Ackoglu R. W. Sharpe, Ergodic theory and boundaries, Trans. Amer. Math. Soc. 1320968, 447-460. MR0224770
  2. J. Aczél H. Haruki M. A. McKiernan G. N. Sakovič, General and regular solutions of functional equations characterizing harmonic polynomials, Aequationes Math. I (1968), 37-53. (1968) MR0279471
  3. S. Alinhac, Une caractérisation des fonctions harmoniques dans un ouvert borné par des properiétés de moyenne sur certaines boules, C R. Acad. Sci. Paris, Sér. A-B 275 (1972), 29-31. (1972) MR0306527
  4. J. R. Baxter, Restricted mean values and harmonie functions, Trans. Amer. Math. Soc. 167 (1972), 451-463. (1972) MR0293112
  5. E. F. Beckenbach M. Reade, Mean values and harmonie polynomials, Trans. Amer. Math. Soc. 53 (1943), 230-238. (1943) MR0007831
  6. W. Blaschke, Ein Mittelwertsatz und eine kennzeichnende Eigenschaft des logaritmischen Potentials, Ber. Ver. Sachs. Akad. Wiss. Leipzig 68 (1916), 3-7. (1916) 
  7. A. K. Bose, Functions satisfying a weighted average property, Trans. Amer. Math. Soc. 118 (1965), 472-487. (1965) Zbl0136.09404MR0177128
  8. J. Bramble L. E. Payne, Mean value theorems for polyharmonic functions, Amer. Math. Monthly 73 (1966), 124-127. (1966) MR0192074
  9. M. Brelot, Éléments de la théorie classique du potential, CDU, Paris, 1969. (1969) 
  10. W. Bródel, Funktionen mit Gaussischen Mittelwerteigenschaften fur konvexe Kurven und Bereiche, , Deutsche Math. 4 (1939), 3-15. (1939) 
  11. A. Brunel, Propriété restreinte de valeur moyenne caractérisant les fonctions harmoniques bornées sur un ouvert R n , (selon D. Heath et L. Orey), Exposé No. XIV, Séminaire Goulaouic-Schwartz, Paris, 1971-72. (1971) 
  12. Z. Cisielski Z. Semadeni, Przegla̧d niektórych nowszych metod w teorii potenejalu III, Prace matematyezne II (1967), 99-128. (1967) 
  13. R. Courant D. Hilbert, Mathematical methods of Physics, vol. II, Interscience Pub., New York, 1966. (1966) 
  14. I. Černý, Základy analysy v komplexním oboru, Academia, Praha, 1967. (1967) MR0222257
  15. J. Delsarte, Note sur une propriété nouvelle des fonctions harmoniques, C. R. Acad. Sci. Paris, Sér. A-B 246 (1958), 1358-1360. (1958) Zbl0084.09403MR0096050
  16. J. Delsarte J. L. Lions, Moyennes generalises, Comment. Math. Helv. 33 (1959), 59-69. (1959) MR0102672
  17. J. Delsarte, Lectures on topics in mean periodic functions and the two-radius theorem, Tata Inst. Fund. Research, Bombay, 1961. (1961) 
  18. J. Deny, Families fondamentales. Noyaux associes, Ann. Inst. Fourier 3 (1951), 73-101. (1951) MR0067262
  19. Encyklopadie der mathematischen Wissenschaften, II. Band, 3.L, Teubner-Verlag, 1899-916. 
  20. B. Epstein, On the mean value property of harmonic functions, Proc. Amer. Math. Soc. 13 (1962), 830. (1962) Zbl0109.07501MR0140700
  21. B. Epstein M. M. Schiffer, On the mean-value property of harmonic functions, J. Analyse Math. 14 (1965), 109-111. (1965) MR0177124
  22. G. C. Evans, On potentials of positive mass, Trans. Amer. Math. Soc. 37 (1935), 226-253. (1935) Zbl0011.21201MR1501785
  23. W. Feller, Boundaries induced by non-negative matrices, Trans. Amer. Math. Soc. 83 (1956), 19-54. (1956) Zbl0071.34901MR0090927
  24. L. Flatto, Functions with a mean value property, J. Math. Mech. 10 (1961), 11-18. (1961) Zbl0097.30605MR0136751
  25. L. Flatto, The converse of Gauss's theorem for harmonic functions, J. Differential Equations 1 (1965), 483-490. (1965) Zbl0132.07804MR0185134
  26. A. Friedman W. Littman, Bodies for which harmonic functions satisfy the mean value property, Trans. Amer. Math. Soc. 102 (1962), 147-166. (1962) MR0151627
  27. A. Friedman W. Littman, Functions satisfying the mean value property, Trans. Amer. Math. Soc. 102 (1962), 167-180. (1962) MR0151628
  28. W. Fulks, An approximate Gauss mean value theorem, Pac. J. Math. 14 (1964), 513-516. (1964) Zbl0163.34503MR0162047
  29. A. M. Garsia, A note on the mean value property, Trans. Amer. Math. Soc. 102 (1962), 181-186. (1962) Zbl0103.32202MR0151629
  30. C. F. Gauss, Algemeine Lehrsatze in Beziehung auf die im verkehrtem Verhaltnisse des Quadrats der Entfernung Wirkenden Anziehungs- und Abstossungs-Krafte, 1840, Werke, 5. Band, Gottingen, 1867. 
  31. R. Godement, Une generalisation du theoreme de la moyenne pour les fonctions harmoniques, C R. Acad. Sci. Paris Ser. A-B 234 (1952), 2137-2139. (1952) Zbl0049.30301MR0047056
  32. M. Goldstein W. H. Ow, On the mean-value property of harmonic functions, Proc. Amer. Math. Soc. 29 (1971), 341-344 MR0279320
  33. J. W. Green, Mean values of harmonic functions on homothetic curves, Pac. J. Math. 6 (1956), 279-282. (1956) Zbl0071.32003MR0080759
  34. M. Heins, Complex function theory, Academic Press, New York, 1968. (1968) Zbl0155.11501MR0239054
  35. L. L. Helms, Introduction to potential theory, Wiley-Interscience, New York, 1969. (1969) Zbl0188.17203MR0261018
  36. M. R. Hirschfeld, Sur les fonctions μ -harmoniques dans un espace localement compact mesuré, C R. Acad. Sci. Paris, Ser. A-B 262 (1966), 174-176. (1966) MR0192069
  37. E. Hopf, Bemerkungen zur Aufgabe 49, Jber. Deutsch. Math. Verein. 39 (1930), 2. Teil, 5-7. (1930) 
  38. F. Huckemann, On the one circle problem for harmonic functions, J. London Math. Soc. 29 (1954), 491-497. (1954) Zbl0056.32601MR0063499
  39. G. Choquet J. Deny, Sur quelques propriétés de moyenne caractéristiques des fonctions harmoniques et polyharmoniques, Bull. Soc. Math. France 12 (1944), 118-140. (1944) MR0013496
  40. V. Jarnik, Diferencialní počet II, NCSAV, Praha, 1956. (1956) 
  41. F. John, Plane waves and spherical means applied to partial differential equations, Interscience Publishers, New York, 1955. (1955) Zbl0067.32101MR0075429
  42. O. D. Kellog, Converses of Gauss's theorem on the arithmetic mean, Trans. Amer. Math. Soc. 36 (1934), 227-242. (1934) MR1501739
  43. C. D. Kellog, Les moyennes arithmetiques dans la theorie du potentiel, L'Enseignement Math. 21 (1928), 14-26. (1928) 
  44. O. D. Kellog, Foundations of Potential Theory, Springer-Verlag, Berlin, 1967. (1967) MR0222317
  45. J. Král I. Netuka J. Veselý, Teorie potenciálu II, SPN, Praha, 1972. (1972) 
  46. P. Koebe, Herleitung der partiellen Differentialgleichungen der Potentialfunktion aus deren Integraleigenschaft, Sitzungsber. Berlin. Math. Gessellschaft 5 (1906), 39-42. (1906) 
  47. Ü. Kuran, On the mean value property of harmonic functions, Bull. London Math. Soc. 4(1972), 311-312. (1972) Zbl0257.31006MR0320348
  48. H. Lebesgue, Sur le théoreme de la moyenne de Gauss, Bull. Soc. Math. France 40 (1912), 16-17. (1912) 
  49. E. Levi, Sopra una proprietá caratteristica delle funzione armoniche, Atti della Reale Acad. Lincei 18(1909), 10-15. (1909) 
  50. J. L. Littlewood, On the definition of a subharmonic function, J. London Math. Soc. 2 (1927), 189-192. (1927) 
  51. J. L. Littlewood, Some problems in real and complex analysis, Hath. Math. Monographs, Massachusetts, 1968. (1968) Zbl0185.11502
  52. J. Mařík, Úloha č. 10, Časopis Pěst. Mat. 81 (1956), 470. (1956) 
  53. J. Mařík, Dirichletova úloha, Časopis Pěst. Mat. 82 (1957), 257-282. (1957) MR0090666
  54. L Netuka, Řešení úlohy č. 10, Časopis Pěst. Mat. 94 (1969), 223-225. (1969) 
  55. M. Parreau, Sur les moyennes des fonctions harmoniques et analytiques et la classification des surfaces de Riemann, Ann. Inst. Fourier 3 (1951), 103-197. (1951) Zbl0047.32004MR0050023
  56. M. Plancherel, Les problěmes de Cantor et de du Bois-Reymond, Ann. Sci. Ecole Norm. Sup. 31 (1914), 223-262. (1914) MR1509177
  57. H. Poritsky, On operations permutable with the Laplacian, Amer. J. Math. 54 (1932), 667-691. (1932) Zbl0005.36001MR1506929
  58. H. Poritsky, Generalizations of the Gauss law of spherical mean, Trans. Amer. Math. Soc. 43 (1938), 199-225. (1938) MR1501939
  59. I. Privaloff, On a theorem of S. Saks, Mat. Sb. 9 (51) (1941), 457-460. (1941) Zbl0024.40402MR0004364
  60. S. Saks, On the operators Blaschke and Privaloff for subharmonic functions, Mat. Sb. 9(51)(1941), 451-456. (1941) MR0004363
  61. S. Saks A. Zykmund, Analytic functions, PWN, Warszawa, 1965. (1965) 
  62. K. T. Smith, Mean values and continuty of Riesz potentials, Comm. Pure Appl. Math. 9 (1956), 569-576. (1956) MR0081357
  63. E. Smyrnélis, Sur les moyennes des fonctions paraboliques, Bull. Sci. Math. 93 (1969), 163-173. (1969) MR0277901
  64. E. Smyrnélis, Mesures normales et fonctions harmoniques, Bull. Sci. Math. 95 (1971), 197-207. (1971) MR0294681
  65. J. M. Thompson, Distribution of mass for averages of Newtonian potential functions, Bull. Amer. Math. Soc. 41 (1935), 744-752. (1935) Zbl0013.01501MR1563179
  66. L. Tonelli, Sopra una proprietá caratteristica delle funzione armoniche, Atti della Reale Acad. Lincei 18 (1909), 557-532. (1909) 
  67. W. A. Veech, A zero - one law for a class of random walks and a converse to Gauss mean value theorem, Ann. of Math. 97 (1973), 189-216. (1973) Zbl0282.60048MR0310269
  68. W. A. Veech, A converse to the mean value theorem for harmonic functions, (preprint). Zbl0324.31002
  69. V. Volterra, Alcune osservazioni sopra proprietá atte ad individuare una funzione, Atti della Reale Acad. Lincei 18 (1909), 263-266. (1909) 
  70. J. L. Walsh, A mean value theorem for polynomials and harmonic polynomials, Bull. Amer. Math. Soc. 42 (1936), 923-930. (1936) Zbl0016.12302MR1563465
  71. L. Zalcman, Analyticity and the Pompeiue problem, Arch. Rational Mech. Anal. 47 (1972), 237-254. (1972) MR0348084
  72. L. Zalcman, Mean values and differential equations, Israel J. Math. 14 (1973), 339-353. (1973) Zbl0263.35013MR0335835
  73. S. Zaremba, Contributions á la théorie d'une equation fonctionnelle de la physique, Rend. Circ. Mat. Palermo (1905), 140. (1905) 
  74. S. Alinhac, Une caracterisation des fonctions harmoniques dans un ouvert par certaines propriétés de moyenne, Rev. Roumaine Math. Pures Appl. 18 (1973), 1465-1472. (1973) MR0346169
  75. S. C. Chu, On a mean value property for solutions of a wave equation, Amer. Math. Monthly 74 (1967), 711-713. (1967) Zbl0149.06402MR0212419
  76. M. Nicolescu, Une propriété caractéristique de moyenne des solutions régulières de l'équation de la chaleur, Com. Acad. R. P. Romane 2 (1952), 677-679. (1952) Zbl0082.31001MR0070844
  77. M. Nicolescu, Sur une propriété caractéristique de moyenne des fonctions polycaloriques, Com. Acad. R. P. Romane 4 (1954), 551-554. (1954) Zbl0059.09201MR0070845
  78. M. Nicolescu, Propriété de moyenne des fonctions harmoniques bornées dans un demi-plan ou dans un angle droit, Rev. Roumaine Math. Pures Appl. 1 (1956), 43-50. (1956) MR0083046
  79. M. Nicolescu, Sur les moyennes généralisées successives d'une fonction, Rev. Roumaine Math. Pures Appl. 6 (1961), 429-441; Mathematica (Cluj) 4 (27) (1962), 107-121. (1961) Zbl0108.05203MR0155987
  80. D. P. Stanford, Functions satisfying a mean value property at their zeros, Amer. Math. Monthly 80 (1973), 665-667. (1973) Zbl0277.26006MR0315068
  81. J. Barta, Some mean value theorems in the potential theory, Acta Tech. Acad. Sci. Hungar. 75(1973), 3-11. (1973) Zbl0309.31006MR0348129

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.