Restricted mean value property in axiomatic potential theory
Commentationes Mathematicae Universitatis Carolinae (1982)
- Volume: 023, Issue: 4, page 613-628
- ISSN: 0010-2628
Access Full Article
topHow to cite
topVeselý, Jiří. "Restricted mean value property in axiomatic potential theory." Commentationes Mathematicae Universitatis Carolinae 023.4 (1982): 613-628. <http://eudml.org/doc/17208>.
@article{Veselý1982,
author = {Veselý, Jiří},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {restricted mean value property; axiomatic potential theory},
language = {eng},
number = {4},
pages = {613-628},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Restricted mean value property in axiomatic potential theory},
url = {http://eudml.org/doc/17208},
volume = {023},
year = {1982},
}
TY - JOUR
AU - Veselý, Jiří
TI - Restricted mean value property in axiomatic potential theory
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1982
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 023
IS - 4
SP - 613
EP - 628
LA - eng
KW - restricted mean value property; axiomatic potential theory
UR - http://eudml.org/doc/17208
ER -
References
top- ASH R. B., Measure, Integration and Functional Analysis, Academic Press, New York and London 1972. (1972) Zbl0249.28001MR0435321
- BAUER H., Harmonische Räume und ihre Potentialtheorie, Springer Verlag, Berlin 1966. (1966) Zbl0142.38402MR0210916
- CONSTANTINESCU C., CORNE A., Potential Theory on Harmonic Spaces, Springer Verlag, New York 1972. (1972) MR0419799
- FENTON P. C., On sufficient conditions for harmonicity, Trans. Amer. Math, Soc. 253 (1979), 139-147. (1979) Zbl0368.31001MR0536939
- HEATH D., Functions possessing restricted mean value properties, Proc. Amer. Math. Soc 41 (1973), 588-595. (1973) Zbl0251.31004MR0333213
- KELLOG O. D., Converses of Gauss's theorem on the arithmetic mean, Trans. Amer. Math. Soc. 36 (1934), 227-242. (1934) MR1501739
- LEBESGUE H., Sur le problème de Dirichlet, C. R. Acad. Sci. Paris 154 (1912), 335-337. (1912)
- LEBESGUE H., Sur le théorème de la moyenne de Gauss, Bull. Soc. Math, France 40 (1912), 16-17. (1912)
- NETUKA I., Harmonic functions and the mean value theorems, (in Czech), Čas. pěst. mat. 100 (1975), 391-409. (1975) MR0463461
- NETUKA I., L'unicité du problème de Dirichlet généralisé pour un compact, in; Séminaire de Théorie du Potentiel Paris, No. 6, Lecture Notes in Mathematics 906, Springer Verlag, Berlin 1982, 269-281. (1982) Zbl0481.31008MR0663569
- ØKSENDAL B., STROOCK D. W., A characterization of harmonic measure and Markov processes whose hitting distributions are preserved by rotations, translations and dilatations (preprint).
- VEECH W. A., A converse to the mean value theorem for harmonic functions, Amer. J. Math. 97 (1976), 1007-1027. (1976) Zbl0324.31002MR0393521
- VESELÝ J., Sequence solutions of the Dirichlet problem, Čas. pěst. mat. 106 (1981), 84-93. (1981) MR0613711
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.