On the existence of a -factor in the fourth power of a graph
Časopis pro pěstování matematiky (1980)
- Volume: 105, Issue: 2, page 204-207
- ISSN: 0528-2195
Access Full Article
topHow to cite
topNebeský, Ladislav. "On the existence of a $3$-factor in the fourth power of a graph." Časopis pro pěstování matematiky 105.2 (1980): 204-207. <http://eudml.org/doc/21428>.
@article{Nebeský1980,
author = {Nebeský, Ladislav},
journal = {Časopis pro pěstování matematiky},
keywords = {power of a graph; 3-factor},
language = {eng},
number = {2},
pages = {204-207},
publisher = {Mathematical Institute of the Czechoslovak Academy of Sciences},
title = {On the existence of a $3$-factor in the fourth power of a graph},
url = {http://eudml.org/doc/21428},
volume = {105},
year = {1980},
}
TY - JOUR
AU - Nebeský, Ladislav
TI - On the existence of a $3$-factor in the fourth power of a graph
JO - Časopis pro pěstování matematiky
PY - 1980
PB - Mathematical Institute of the Czechoslovak Academy of Sciences
VL - 105
IS - 2
SP - 204
EP - 207
LA - eng
KW - power of a graph; 3-factor
UR - http://eudml.org/doc/21428
ER -
References
top- M. Behzad, G. Chartrand, Introduction to the Theory of Graphs, Allyn and Bacon, Boston 1971. (1971) Zbl0238.05101MR0432461
- G. Chartrand A. D. Polimeni, M. J. Stewart, The existence of 1-factors in line graphs, squares, and total graphs. Indagationes Мath. 35 (1973), 228-232. (1973) MR0321809
- F. Harary, Graph Theory, Addison-Wesley, Reading (Mass.) 1969. (1969) Zbl0196.27202MR0256911
- M. Sekanina, On an ordering of the set of vertices of a connected gгaph, Publ. Sci. Univ. Brno 412 (1960), 137-142. (1960) MR0140095
- D. P. Sumner, Graphs with 1-factors, Proc. Amer. Math. Soc. 42 (1974), 8-12. (1974) Zbl0293.05157MR0323648
Citations in EuDML Documents
top- Ladislav Nebeský, Elena Wisztová, Regular factors in powers of connected graphs
- Ladislav Nebeský, On -factors in the cube of a graph
- Ladislav Nebeský, On a -factor of the fourth power of a connected graph
- Ladislav Nebeský, Elena Wisztová, Two edge-disjoint Hamiltonian cycles of powers of a graph
- Elena Wisztová, A Hamiltonian cycle and a -factor in the fourth power of a graph
- Ladislav Nebeský, Edge-disjoint 1-factors in powers of connected graphs
- Ladislav Nebeský, A matching and a Hamiltonian cycle of the fourth power of a connected graph
- Elena Wisztová, On a Hamiltonian cycle of the fourth power of a connected graph
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.