Almost everywhere summability of Laguerre series
Studia Mathematica (1991)
- Volume: 100, Issue: 2, page 129-147
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topStempak, Krzysztof. "Almost everywhere summability of Laguerre series." Studia Mathematica 100.2 (1991): 129-147. <http://eudml.org/doc/215878>.
@article{Stempak1991,
abstract = {We apply a construction of generalized twisted convolution to investigate almost everywhere summability of expansions with respect to the orthonormal system of functions $ℓ_n^a(x) = (n!/Γ(n+a+1))^\{1/2\} e^\{-x/2\} L_n^a(x)$, n = 0,1,2,..., in $L^2(ℝ_+, x^adx)$, a ≥ 0. We prove that the Cesàro means of order δ > a + 2/3 of any function $f ∈ L^p(x^adx)$, 1 ≤ p ≤ ∞, converge to f a.e. The main tool we use is a Hardy-Littlewood type maximal operator associated with a generalized Euclidean convolution.},
author = {Stempak, Krzysztof},
journal = {Studia Mathematica},
keywords = {Laguerre expansions; generalized twisted convolution; Riesz; Cesàro and Abel-Poisson means; Laguerre series; Watson's product formula; Laguerre polynomials; Riesz means; Abel-Poisson means; almost everywhere summability; Cesàro means; Hardy- Littlewood type maximal operator; generalized Euclidean convolution},
language = {eng},
number = {2},
pages = {129-147},
title = {Almost everywhere summability of Laguerre series},
url = {http://eudml.org/doc/215878},
volume = {100},
year = {1991},
}
TY - JOUR
AU - Stempak, Krzysztof
TI - Almost everywhere summability of Laguerre series
JO - Studia Mathematica
PY - 1991
VL - 100
IS - 2
SP - 129
EP - 147
AB - We apply a construction of generalized twisted convolution to investigate almost everywhere summability of expansions with respect to the orthonormal system of functions $ℓ_n^a(x) = (n!/Γ(n+a+1))^{1/2} e^{-x/2} L_n^a(x)$, n = 0,1,2,..., in $L^2(ℝ_+, x^adx)$, a ≥ 0. We prove that the Cesàro means of order δ > a + 2/3 of any function $f ∈ L^p(x^adx)$, 1 ≤ p ≤ ∞, converge to f a.e. The main tool we use is a Hardy-Littlewood type maximal operator associated with a generalized Euclidean convolution.
LA - eng
KW - Laguerre expansions; generalized twisted convolution; Riesz; Cesàro and Abel-Poisson means; Laguerre series; Watson's product formula; Laguerre polynomials; Riesz means; Abel-Poisson means; almost everywhere summability; Cesàro means; Hardy- Littlewood type maximal operator; generalized Euclidean convolution
UR - http://eudml.org/doc/215878
ER -
References
top- [1] R. Askey and I. I. Hirschman, Jr., Mean summability for ultraspherical polynomials, Math. Scand. 12 (1963), 167-177. Zbl0132.29501
- [2] R. Askey and S. Wainger, Mean convergence of expansions in Laguerre and Hermite series, Amer. J. Math. 87 (1965), 695-708. Zbl0125.31301
- [3] C. P. Calderón, On Abel summability of multiple Laguerre series, Studia Math. 33 (1969), 273-294. Zbl0198.10001
- [4] R. Coifman et G. Weiss, Analyse harmonique non commutative sur certains espaces homogènes, Lecture Notes in Math. 242, Springer, Berlin 1971. Zbl0224.43006
- [5] J. Długosz, Almost everywhere convergence of some summability methods for Laguerre series, Studia Math. 82 (1985), 199-209. Zbl0574.42020
- [6] G. Freud and S. Knapowski, On linear processes of approximation (III), ibid. 25 (1965), 373-383. Zbl0129.04603
- [7] E. Görlich and C. Markett, Mean Cesàro summability and operator norms for Laguerre expansions, Comment. Math., Tomus specialis II (1979), 139-148. Zbl0437.42013
- [8] E. Görlich and C. Markett, A convolution structure for Laguerre series, Indag. Math. 44 (1982), 161-171. Zbl0489.42030
- [9] C. Markett, Norm estimates for Cesàro means of Laguerre expansions, in: Approximation and Function Spaces (Proc. Conf. Gdańsk 1979), North-Holland, Amsterdam 1981, 419-435.
- [10] C. Markett, Mean Cesàro summability of Laguerre expansions and norm estimates with shifted parameter, Anal. Math. 8 (1982), 19-37. Zbl0515.42023
- [11] C. Markett, Norm estimates for generalized translation operators associated with a singular differential operator, Indag. Math. 46 (1984), 299-313. Zbl0566.35074
- [12] B. Muckenhoupt, Poisson integrals for Hermite and Laguerre expansions, Trans. Amer. Math. Soc. 139 (1969), 231-242. Zbl0175.12602
- [13] B. Muckenhoupt, Mean convergence of Hermite and Laguerre series. II, ibid. 147 (1970), 433-460.
- [14] J. Peetre, The Weyl transform and Laguerre polynomials, Le Matematiche 27 (1972), 301-323. Zbl0276.44005
- [15] E. L. Poiani, Mean Cesàro summability of Laguerre and Hermite series, Trans. Amer. Math. Soc. 173 (1972), 1-31. Zbl0224.42014
- [16] H. Pollard, The mean convergence of orthogonal series. II, ibid. 63 (1948), 355-367. Zbl0032.40601
- [17] K. Stempak, An algebra associated with the generalized sublaplacian, Studia Math. 88 (1988), 245-256. Zbl0672.46025
- [18] K. Stempak, Mean summability methods for Laguerre series, Trans. Amer. Math. Soc. 322 (1990), 671-690. Zbl0713.42024
- [19] S. Thangavelu, Multipliers for the Weyl transform and Laguerre expansions, Proc. Indian Acad. Sci. 100 (1990), 9-20. Zbl0734.42009
- [20] S. Thangavelu, On almost everywhere and mean convergence of Hermite and Laguerre expansions, Colloq. Math. 60/61 (1990), 21-34. Zbl0747.42014
- [21] G. N. Watson, Another note on Laguerre polynomials, J. London Math. Soc. 14 (1939), 19-22. Zbl0020.21805
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.