Spherical functions and uniformly bounded representations of free groups
Studia Mathematica (1991)
- Volume: 100, Issue: 3, page 237-250
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] P. Cartier, Géométrie et analyse sur les arbres, Séminaire Bourbaki 24 (1971/72), Exposé 407. Zbl0267.14010
- [2] P. Cartier, Harmonic analysis on trees, in: Proc. Sympos. Pure Math. 26 (1972), 419-424.
- [3] A. Figà-Talamanca and A. M. Picardello, Spherical functions and harmonic analysis on free groups, J. Funct. Anal. 47 (1982), 281-304. Zbl0489.43008
- [4] A. Figà-Talamanca and A. M. Picardello, Harmonic Analysis on Free Groups, M. Dekker, New York 1983. Zbl0536.43001
- [5] A. M. Mantero, T. Pytlik, R. Szwarc and A. Zappa, Equivalence of two series of spherical representations of a free group, Ann. Mat. Pura Appl., to appear. Zbl0801.22010
- [6] A. M. Mantero and A. Zappa, The Poisson transform and representations of a free group, J. Funct. Anal. 51 (1983), 372-399. Zbl0532.43006
- [7] A. M. Mantero and A. Zappa, Irreducibility of the analytic continuation of the principal series of a free group, J. Austral. Math. Soc. 43 (1987), 199-210.
- [8] M. Pimsner, Cocycles on trees, J. Operator Theory 17 (1987), 121-128. Zbl0645.46056
- [9] T. Pytlik, Radial functions on free groups and a decomposition of the regular representation into irreducible components, J. Reine Angew. Math. 326 (1981), 124-135. Zbl0464.22004
- [10] T. Pytlik, Spherical functions and uniformly bounded representations of free groups, preprint 60 (1986), Math. Inst. Univ. Wrocław. Zbl0754.22002
- [11] T. Pytlik and R. Szwarc, An analytic family of uniformly bounded representations of free groups, Acta Math. 157 (1986), 287-309. Zbl0681.43011
- [12] S. Sawyer, Isotropic random walks in a tree, Z. Wahrsch. Verw. Gebiete 12 (1978), 279-292. Zbl0362.60075
- [13] R. Szwarc, An analytic series of irreducible representations of the free group, Ann. Inst. Fourier (Grenoble) 38 (1) (1988), 87-110. Zbl0634.22003
- [14] A. Valette, Cocycles d'arbres et représentations uniformément bornées, C. R. Acad. Sci. Paris 310 (1990), 703-708. Zbl0828.22007