An analytic series of irreducible representations of the free group

Ryszard Szwarc

Annales de l'institut Fourier (1988)

  • Volume: 38, Issue: 1, page 87-110
  • ISSN: 0373-0956

Abstract

top
Let F k be a free group on k generators. We construct the series of uniformly bounded representations z of F k acting on the common Hilbert space, depending analytically on the complex parameter z, 1 / ( 2 k - 1 ) < | z | < 1 , such that each representation z is irreducible. If z is real or | z | = 1 / ( 2 k - 1 ) then z is unitary; in other cases z cannot be made unitary. For z z ' representations z and z ' are congruent modulo compact operators.

How to cite

top

Szwarc, Ryszard. "An analytic series of irreducible representations of the free group." Annales de l'institut Fourier 38.1 (1988): 87-110. <http://eudml.org/doc/74795>.

@article{Szwarc1988,
abstract = {Let $\{\bf F\}_ k$ be a free group on $k$ generators. We construct the series of uniformly bounded representations $\prod _ z$ of $\{\bf F\}_ k$ acting on the common Hilbert space, depending analytically on the complex parameter z, $1/(2k-1)&lt; \vert z\vert &lt; 1$, such that each representation $\prod _ z$ is irreducible. If $z$ is real or $\vert z\vert =1/(\sqrt\{2k-1\})$ then $\prod _ z$ is unitary; in other cases $\prod _ z$ cannot be made unitary. For $z\ne z^\{\prime \}$ representations $\prod _ z$ and $\prod _\{z^\{\prime \}\}$ are congruent modulo compact operators.},
author = {Szwarc, Ryszard},
journal = {Annales de l'institut Fourier},
keywords = {analytic series; free group; uniformly bounded representations; unitary representations; Hilbert spaces},
language = {eng},
number = {1},
pages = {87-110},
publisher = {Association des Annales de l'Institut Fourier},
title = {An analytic series of irreducible representations of the free group},
url = {http://eudml.org/doc/74795},
volume = {38},
year = {1988},
}

TY - JOUR
AU - Szwarc, Ryszard
TI - An analytic series of irreducible representations of the free group
JO - Annales de l'institut Fourier
PY - 1988
PB - Association des Annales de l'Institut Fourier
VL - 38
IS - 1
SP - 87
EP - 110
AB - Let ${\bf F}_ k$ be a free group on $k$ generators. We construct the series of uniformly bounded representations $\prod _ z$ of ${\bf F}_ k$ acting on the common Hilbert space, depending analytically on the complex parameter z, $1/(2k-1)&lt; \vert z\vert &lt; 1$, such that each representation $\prod _ z$ is irreducible. If $z$ is real or $\vert z\vert =1/(\sqrt{2k-1})$ then $\prod _ z$ is unitary; in other cases $\prod _ z$ cannot be made unitary. For $z\ne z^{\prime }$ representations $\prod _ z$ and $\prod _{z^{\prime }}$ are congruent modulo compact operators.
LA - eng
KW - analytic series; free group; uniformly bounded representations; unitary representations; Hilbert spaces
UR - http://eudml.org/doc/74795
ER -

References

top
  1. [1] P. CARTIER, Harmonic analysis on trees, Proc. Sympos. Pure Math. Amer. Math. Soc., 26 (1972), 419-424. Zbl0309.22009MR49 #3038
  2. [2] J. M. COHEN, Operator norms on free groups, Boll. Un. Math. Ital., 1-B (1982), 1055-1065. Zbl0518.46050MR85d:22011
  3. [3] A. CONNES, The Chern character in K-homology, preprint. 
  4. [4] A. FIGÀ-TALAMANGA, M.A. PICARDELLO, Spherical functions and harmonic analysis on free groups, J. Funct. Anal., 47 (1982), 281-304. Zbl0489.43008MR83m:22018
  5. [5] A. FIGÀ-TALAMANGA, M.A. PICARDELLO, Harmonic analysis on free groups, Lecture Notes in Pure Appl. Math., M. Dekker, New York 1983. Zbl0536.43001
  6. [6] U. HAAGERUP, An example of a non-nuclear C*-algebra which has the metric approximation property, Invent. Math., 50 (1979), 279-293. Zbl0408.46046MR80j:46094
  7. [7] R. A. KUNZE, E. M. STEIN, Uniformly bounded representations and harmonic analysis of the 2 x 2 real unimodular group, Amer. J. Math., 82 (1960), 1-62. Zbl0156.37104MR29 #1287
  8. [8] A. M. MANTERO, A. ZAPPA, The Poisson transform on free groups and uniformly bounded representations, J. Funct. Anal., 47 (1983), 372-400. Zbl0532.43006MR85b:22010
  9. [9] M. PIMSNER, D. VOICULESCU, K-groups of reduced crossed products by free groups, J. Oper. Theory, 8 (1982), 131-156. Zbl0533.46045MR84d:46092
  10. [10] T. PYTLIK, Radial functions on free groups and a decomposition of the regular representation into irreducible components, J. Reine Angew. Math., 326 (1981), 124-135. Zbl0464.22004MR84a:22017
  11. [11] T. PYTLIK, R. SZWARC, An analytic family of uniformly bounded representations of free groups, Acta Math., 157 (1986), 287-309. Zbl0681.43011MR88e:22014
  12. [12] H. YOSHIZAWA, Some remarks on unitary representations of the free group, Osaka Math. J., 3 (1951), 55-63. Zbl0045.30103MR13,10h

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.