An analytic series of irreducible representations of the free group
Annales de l'institut Fourier (1988)
- Volume: 38, Issue: 1, page 87-110
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topSzwarc, Ryszard. "An analytic series of irreducible representations of the free group." Annales de l'institut Fourier 38.1 (1988): 87-110. <http://eudml.org/doc/74795>.
@article{Szwarc1988,
abstract = {Let $\{\bf F\}_ k$ be a free group on $k$ generators. We construct the series of uniformly bounded representations $\prod _ z$ of $\{\bf F\}_ k$ acting on the common Hilbert space, depending analytically on the complex parameter z, $1/(2k-1)< \vert z\vert < 1$, such that each representation $\prod _ z$ is irreducible. If $z$ is real or $\vert z\vert =1/(\sqrt\{2k-1\})$ then $\prod _ z$ is unitary; in other cases $\prod _ z$ cannot be made unitary. For $z\ne z^\{\prime \}$ representations $\prod _ z$ and $\prod _\{z^\{\prime \}\}$ are congruent modulo compact operators.},
author = {Szwarc, Ryszard},
journal = {Annales de l'institut Fourier},
keywords = {analytic series; free group; uniformly bounded representations; unitary representations; Hilbert spaces},
language = {eng},
number = {1},
pages = {87-110},
publisher = {Association des Annales de l'Institut Fourier},
title = {An analytic series of irreducible representations of the free group},
url = {http://eudml.org/doc/74795},
volume = {38},
year = {1988},
}
TY - JOUR
AU - Szwarc, Ryszard
TI - An analytic series of irreducible representations of the free group
JO - Annales de l'institut Fourier
PY - 1988
PB - Association des Annales de l'Institut Fourier
VL - 38
IS - 1
SP - 87
EP - 110
AB - Let ${\bf F}_ k$ be a free group on $k$ generators. We construct the series of uniformly bounded representations $\prod _ z$ of ${\bf F}_ k$ acting on the common Hilbert space, depending analytically on the complex parameter z, $1/(2k-1)< \vert z\vert < 1$, such that each representation $\prod _ z$ is irreducible. If $z$ is real or $\vert z\vert =1/(\sqrt{2k-1})$ then $\prod _ z$ is unitary; in other cases $\prod _ z$ cannot be made unitary. For $z\ne z^{\prime }$ representations $\prod _ z$ and $\prod _{z^{\prime }}$ are congruent modulo compact operators.
LA - eng
KW - analytic series; free group; uniformly bounded representations; unitary representations; Hilbert spaces
UR - http://eudml.org/doc/74795
ER -
References
top- [1] P. CARTIER, Harmonic analysis on trees, Proc. Sympos. Pure Math. Amer. Math. Soc., 26 (1972), 419-424. Zbl0309.22009MR49 #3038
- [2] J. M. COHEN, Operator norms on free groups, Boll. Un. Math. Ital., 1-B (1982), 1055-1065. Zbl0518.46050MR85d:22011
- [3] A. CONNES, The Chern character in K-homology, preprint.
- [4] A. FIGÀ-TALAMANGA, M.A. PICARDELLO, Spherical functions and harmonic analysis on free groups, J. Funct. Anal., 47 (1982), 281-304. Zbl0489.43008MR83m:22018
- [5] A. FIGÀ-TALAMANGA, M.A. PICARDELLO, Harmonic analysis on free groups, Lecture Notes in Pure Appl. Math., M. Dekker, New York 1983. Zbl0536.43001
- [6] U. HAAGERUP, An example of a non-nuclear C*-algebra which has the metric approximation property, Invent. Math., 50 (1979), 279-293. Zbl0408.46046MR80j:46094
- [7] R. A. KUNZE, E. M. STEIN, Uniformly bounded representations and harmonic analysis of the 2 x 2 real unimodular group, Amer. J. Math., 82 (1960), 1-62. Zbl0156.37104MR29 #1287
- [8] A. M. MANTERO, A. ZAPPA, The Poisson transform on free groups and uniformly bounded representations, J. Funct. Anal., 47 (1983), 372-400. Zbl0532.43006MR85b:22010
- [9] M. PIMSNER, D. VOICULESCU, K-groups of reduced crossed products by free groups, J. Oper. Theory, 8 (1982), 131-156. Zbl0533.46045MR84d:46092
- [10] T. PYTLIK, Radial functions on free groups and a decomposition of the regular representation into irreducible components, J. Reine Angew. Math., 326 (1981), 124-135. Zbl0464.22004MR84a:22017
- [11] T. PYTLIK, R. SZWARC, An analytic family of uniformly bounded representations of free groups, Acta Math., 157 (1986), 287-309. Zbl0681.43011MR88e:22014
- [12] H. YOSHIZAWA, Some remarks on unitary representations of the free group, Osaka Math. J., 3 (1951), 55-63. Zbl0045.30103MR13,10h
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.