Isomorphy classes of spaces of holomorphic functions on open polydiscs in dual power series spaces

Manfred Scheve

Studia Mathematica (1991)

  • Volume: 101, Issue: 1, page 83-104
  • ISSN: 0039-3223

Abstract

top
Let Λ_R(α) be a nuclear power series space of finite or infinite type with lim_{j→∞} (1/j) log α_j = 0. We consider open polydiscs D_a in Λ_R(α)'_b with finite radii and the spaces H(D_a) of all holomorphic functions on D_a under the compact-open topology. We characterize all isomorphy classes of the spaces {H(D_a) | a ∈ Λ_R(α), a > 0}. In the case of a nuclear power series space Λ₁(α) of finite type we give this characterization in terms of the invariants (Ω̅ ) and (Ω̃ ) known from the theory of linear operators between Fréchet spaces.

How to cite

top

Scheve, Manfred. "Isomorphy classes of spaces of holomorphic functions on open polydiscs in dual power series spaces." Studia Mathematica 101.1 (1991): 83-104. <http://eudml.org/doc/215894>.

@article{Scheve1991,
abstract = {Let Λ\_R(α) be a nuclear power series space of finite or infinite type with lim\_\{j→∞\} (1/j) log α\_j = 0. We consider open polydiscs D\_a in Λ\_R(α)'\_b with finite radii and the spaces H(D\_a) of all holomorphic functions on D\_a under the compact-open topology. We characterize all isomorphy classes of the spaces \{H(D\_a) | a ∈ Λ\_R(α), a > 0\}. In the case of a nuclear power series space Λ₁(α) of finite type we give this characterization in terms of the invariants (Ω̅ ) and (Ω̃ ) known from the theory of linear operators between Fréchet spaces.},
author = {Scheve, Manfred},
journal = {Studia Mathematica},
keywords = {nuclear power series space of finite or infinite type; holomorphic functions; compact-open topology; linear operators between Fréchet spaces},
language = {eng},
number = {1},
pages = {83-104},
title = {Isomorphy classes of spaces of holomorphic functions on open polydiscs in dual power series spaces},
url = {http://eudml.org/doc/215894},
volume = {101},
year = {1991},
}

TY - JOUR
AU - Scheve, Manfred
TI - Isomorphy classes of spaces of holomorphic functions on open polydiscs in dual power series spaces
JO - Studia Mathematica
PY - 1991
VL - 101
IS - 1
SP - 83
EP - 104
AB - Let Λ_R(α) be a nuclear power series space of finite or infinite type with lim_{j→∞} (1/j) log α_j = 0. We consider open polydiscs D_a in Λ_R(α)'_b with finite radii and the spaces H(D_a) of all holomorphic functions on D_a under the compact-open topology. We characterize all isomorphy classes of the spaces {H(D_a) | a ∈ Λ_R(α), a > 0}. In the case of a nuclear power series space Λ₁(α) of finite type we give this characterization in terms of the invariants (Ω̅ ) and (Ω̃ ) known from the theory of linear operators between Fréchet spaces.
LA - eng
KW - nuclear power series space of finite or infinite type; holomorphic functions; compact-open topology; linear operators between Fréchet spaces
UR - http://eudml.org/doc/215894
ER -

References

top
  1. [1] P. J. Boland and S. Dineen, Holomorphic functions on fully nuclear spaces, Bull. Soc. Math. France 106 (1978), 311-336. Zbl0402.46017
  2. [2] P. A. Chalov and V. P. Zakharyuta, A quasiequivalence criterion for absolute bases in an arbitrary (F)-space, Izv. Severo-Kavkaz. Nauchn. Tsentra Vyssh. Shkoly Estestv. Nauki 1983 (2), 22-24 (in Russian). Zbl0533.46003
  3. [3] P. B. Djakov, A short proof of the theorem of Crone and Robinson on quasi-equivalence of regular bases, Studia Math. 53 (1975), 269-271. Zbl0317.46007
  4. [4] H. Jarchow, Locally Convex Spaces, Teubner, 1981. Zbl0466.46001
  5. [5] R. Meise and D. Vogt, Structure of spaces of holomorphic functions on infinite dimensional polydiscs, Studia Math. 75 (1983), 235-252. Zbl0527.46019
  6. [6] R. Meise and D. Vogt, Analytic isomorphisms of infinite dimensional polydiscs and an application, Bull. Soc. Math. France 111 (1983), 3-20. Zbl0537.46044
  7. [7] R. Meise and D. Vogt, Holomorphic functions of uniformly bounded type on nuclear Fréchet spaces, Studia Math. 83 (1986), 147-166. Zbl0657.46003
  8. [8] R. Meise and D. Vogt, Holomorphic Functions on Nuclear Sequence Spaces, Departamento de Teoría de Funciones, Universidad Complutense, Madrid 1986. Zbl0657.46003
  9. [9] L. Mirsky, Transversal Theory, Academic Press, 1971. 
  10. [10] B. S. Mityagin, The equivalence of bases in Hilbert scales, Studia Math. 37 (1971), 111-137 (in Russian). Zbl0215.19502
  11. [11] A. Pietsch, Nuclear Locally Convex Spaces, Ergeb. Math. Grenzgeb. 66, Springer, 1972. 
  12. [12] H. H. Schaefer, Topological Vector Spaces, Springer, 1971. 
  13. [13] M. Scheve, Räume holomorpher Funktionen auf unendlich-dimensionalen Polyzylindern, Dissertation, Düsseldorf 1988. 
  14. [14] D. Vogt, Frécheträume, zwischen denen jede stetige lineare Abbildung beschränkt ist, J. Reine Angew. Math. 345 (1983), 182-200. 
  15. [15] M. J. Wagner, Unterräume und Quotienten von Potenzreihenräumen, Dissertation, Wuppertal 1977. 
  16. [16] V. P. Zakharyuta, Isomorphism and quasiequivalence of bases for Köthe power series spaces, in: Mathematical Programming and Related Problems (Proc. 7th Winter School, Drogobych 1974), Theory of Operators in Linear Spaces, Akad. Nauk SSSR, Tsentr. Ekon.-Mat. Inst., Moscow 1976, 101-126 (in Russian); see also Dokl. Akad. Nauk SSSR 221 (1975), 772-774 (in Russian). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.