# Structure of spaces of holomorphic functions on infinite dimensional polydiscs

Studia Mathematica (1983)

- Volume: 75, Issue: 3, page 235-262
- ISSN: 0039-3223

## Access Full Article

top## How to cite

topMeise, Reinhold, and Vogt, Dietmar. "Structure of spaces of holomorphic functions on infinite dimensional polydiscs." Studia Mathematica 75.3 (1983): 235-262. <http://eudml.org/doc/218482>.

@article{Meise1983,

author = {Meise, Reinhold, Vogt, Dietmar},

journal = {Studia Mathematica},

keywords = {nuclear power series spaces; (FN)-spaces of holomorphic functions; nuclear Frechet-Köthe space; polydisc; space of holomorphic functions; compact-open topology; nuclear Frechet space},

language = {eng},

number = {3},

pages = {235-262},

title = {Structure of spaces of holomorphic functions on infinite dimensional polydiscs},

url = {http://eudml.org/doc/218482},

volume = {75},

year = {1983},

}

TY - JOUR

AU - Meise, Reinhold

AU - Vogt, Dietmar

TI - Structure of spaces of holomorphic functions on infinite dimensional polydiscs

JO - Studia Mathematica

PY - 1983

VL - 75

IS - 3

SP - 235

EP - 262

LA - eng

KW - nuclear power series spaces; (FN)-spaces of holomorphic functions; nuclear Frechet-Köthe space; polydisc; space of holomorphic functions; compact-open topology; nuclear Frechet space

UR - http://eudml.org/doc/218482

ER -

## Citations in EuDML Documents

top- Reinhold Meise, Dietmar Vogt, Analytic isomorphisms of infinite dimensional polydiscs and an application
- Manfred Scheve, Isomorphy classes of spaces of holomorphic functions on open polydiscs in dual power series spaces
- Seán Dineen, Reinhold Meise, Dietmar Vogt, Characterization of nuclear Fréchet spaces in which every bounded set is polar

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.