A noncommutative version of a Theorem of Marczewski for submeasures

Paolo de Lucia; Pedro Morales

Studia Mathematica (1992)

  • Volume: 101, Issue: 2, page 123-138
  • ISSN: 0039-3223

Abstract

top
It is shown that every monocompact submeasure on an orthomodular poset is order continuous. From this generalization of the classical Marczewski Theorem, several results of commutative Measure Theory are derived and unified.

How to cite

top

de Lucia, Paolo, and Morales, Pedro. "A noncommutative version of a Theorem of Marczewski for submeasures." Studia Mathematica 101.2 (1992): 123-138. <http://eudml.org/doc/215896>.

@article{deLucia1992,
abstract = {It is shown that every monocompact submeasure on an orthomodular poset is order continuous. From this generalization of the classical Marczewski Theorem, several results of commutative Measure Theory are derived and unified.},
author = {de Lucia, Paolo, Morales, Pedro},
journal = {Studia Mathematica},
keywords = {approximating paving; regular submeasure; monocompact submeasure; orthomodular poset; Marczewski theorem},
language = {eng},
number = {2},
pages = {123-138},
title = {A noncommutative version of a Theorem of Marczewski for submeasures},
url = {http://eudml.org/doc/215896},
volume = {101},
year = {1992},
}

TY - JOUR
AU - de Lucia, Paolo
AU - Morales, Pedro
TI - A noncommutative version of a Theorem of Marczewski for submeasures
JO - Studia Mathematica
PY - 1992
VL - 101
IS - 2
SP - 123
EP - 138
AB - It is shown that every monocompact submeasure on an orthomodular poset is order continuous. From this generalization of the classical Marczewski Theorem, several results of commutative Measure Theory are derived and unified.
LA - eng
KW - approximating paving; regular submeasure; monocompact submeasure; orthomodular poset; Marczewski theorem
UR - http://eudml.org/doc/215896
ER -

References

top
  1. [1] A. D. Alexandroff [A. D. Aleksandrov], Additive set-functions in abstract spaces I, Mat. Sb. 8 (50) (1940), 307-348. Zbl66.0218.01
  2. [2] A. D. Alexandroff [A. D. Aleksandrov], Additive set functions in abstract spaces II, ibid. 9 (51) (1941), 563-628. 
  3. [3] O. R. Béaver and T. A. Cook, States on quantum logics and their connection with a theorem of Alexandroff, Proc. Amer. Math. Soc. 67 (1977), 133-134. Zbl0371.28015
  4. [4] L. Beran, Orthomodular Lattices-Algebraic Approach, Academia, Praha 1984. 
  5. [5] K. P. S. Bhaskara Rao and M. Bhaskara Rao, Theory of Charges, Academic Press, London 1983. Zbl0516.28001
  6. [6] N. Bourbaki, Topologie générale, 3rd ed., Actualités Sci. Indust. 1143, Chaps. 3 and 4, Hermann, Paris 1960. 
  7. [7] L. Drewnowski, Topological rings of sets, continuous set functions, integration. II, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 20 (1972), 277-286. Zbl0249.28005
  8. [8] N. Dunford and J. Schwartz, Linear Operators I, Interscience, New York 1958. 
  9. [9] R. Engelking, General Topology, Polish Scientific Publishers, Warszawa 1977. 
  10. [10] W. Gähler, Grundstrukturen der Analysis, Vol. I, Akademie-Verlag, Berlin 1977. Zbl0351.54001
  11. [11] L. Gillman and M. Jerison, Rings of Continuous Functions, Springer, New York 1976. Zbl0327.46040
  12. [12] A. Gleason, Measures on the closed subspaces of a Hilbert space, J. Math. Mech. 6 (1957), 885-893. Zbl0078.28803
  13. [13] I. Glicksberg, The representation of functionals by integrals, Duke Math. J. 19 (1952), 253-261. Zbl0048.09004
  14. [14] J. E. Huneycutt, Jr., Extensions of abstract valued set functions, Trans. Amer. Math. Soc. 141 (1969), 505-513. Zbl0181.41603
  15. [15] G. Kalmbach, Orthomodular Lattices, Academic Press, London 1983. 
  16. [16] G. Kalmbach, Measures and Hilbert Lattices, World Scientific, Singapore 1986. 
  17. [17] I. Kluvánek, Integration Structures, Proc. Centre Math. Anal. Austral. Nat. Univ. 18, 1988. Zbl0704.46002
  18. [18] K. Kuratowski, Topology I, Academic Press, London 1966. 
  19. [19] E. Marczewski, On compact measures, Fund. Math. 40 (1953), 113-124. Zbl0052.04902
  20. [20] H. Millington, Products of group-valued measures, Studia Math. 54 (1975), 7-27. Zbl0325.28010
  21. [21] P. Morales, Regularity and extension of semigroup-valued Baire measures, in: Proc. Conf. Measure Theory, Oberwolfach 1979, Lecture Notes in Math. 794, Springer, New York 1980, 317-323. 
  22. [22] J. von Neumann, Functional Operators I, Princeton Univ. Press, Princeton, N.J., 1950. Zbl0039.28401
  23. [23] J. von Neumann, Mathematical Foundations of Quantum Mechanics, Princeton Univ. Press, Princeton, N.J., 1955. Zbl0064.21503
  24. [24] G. T. Rüttimann, Non-commutative measure theory, preprint, University of Berne, 1979. 
  25. [25] R. Schatten, Norm Ideals of Completely Continuous Operators, Springer, Berlin 1960. 
  26. [26] J. Šipoš, Subalgebras and sublogics of σ-logics, Math. Slovaca 28 (1) (1978), 3-9. Zbl0365.02015
  27. [27] R. M. Stephenson, Pseudo-compact spaces, Trans. Amer. Math. Soc. 134 (1968), 437-448. Zbl0169.53903
  28. [28] A. Sudbery, Quantum Mechanics and the Particles of Nature, Cambridge Univ. Press, Cambridge 1986. Zbl0622.46052
  29. [29] K. Sundaresan and P. W. Day, Regularity of group valued Baire and Borel measures, Proc. Amer. Math. Soc. 36 (1972), 609-612. Zbl0263.28009
  30. [30] F. Topsøe, Approximating pavings and construction of measures, Colloq. Math. 42 (1979), 377-385. Zbl0448.28001
  31. [31] V. S. Varadarajan, Geometry of Quantum Theory, 2nd ed., Springer, Berlin 1985. Zbl0581.46061

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.