Rank and spectral multiplicity
Sébastien Ferenczi; Jan Kwiatkowski
Studia Mathematica (1992)
- Volume: 102, Issue: 2, page 121-144
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topFerenczi, Sébastien, and Kwiatkowski, Jan. "Rank and spectral multiplicity." Studia Mathematica 102.2 (1992): 121-144. <http://eudml.org/doc/215918>.
@article{Ferenczi1992,
abstract = {For a dynamical system (X,T,μ), we investigate the connections between a metric invariant, the rank r(T), and a spectral invariant, the maximal multiplicity m(T). We build examples of systems for which the pair (m(T),r(T)) takes values (m,m) for any integer m ≥ 1 or (p-1, p) for any prime number p ≥ 3.},
author = {Ferenczi, Sébastien, Kwiatkowski, Jan},
journal = {Studia Mathematica},
keywords = {spectral multiplicity; rank; Morse cocycles; measure-preserving transformation; Morse cocycle; dynamical system; metric invariant; spectral invariant; maximal multiplicity},
language = {eng},
number = {2},
pages = {121-144},
title = {Rank and spectral multiplicity},
url = {http://eudml.org/doc/215918},
volume = {102},
year = {1992},
}
TY - JOUR
AU - Ferenczi, Sébastien
AU - Kwiatkowski, Jan
TI - Rank and spectral multiplicity
JO - Studia Mathematica
PY - 1992
VL - 102
IS - 2
SP - 121
EP - 144
AB - For a dynamical system (X,T,μ), we investigate the connections between a metric invariant, the rank r(T), and a spectral invariant, the maximal multiplicity m(T). We build examples of systems for which the pair (m(T),r(T)) takes values (m,m) for any integer m ≥ 1 or (p-1, p) for any prime number p ≥ 3.
LA - eng
KW - spectral multiplicity; rank; Morse cocycles; measure-preserving transformation; Morse cocycle; dynamical system; metric invariant; spectral invariant; maximal multiplicity
UR - http://eudml.org/doc/215918
ER -
References
top- [Age] O. N. Ageev, Dynamical systems with a Lebesgue component of even multiplicity in the spectrum, Mat. Sb. 136 (178) (1988), 307-319 (in Russian).
- [Cha1] R. V. Chacon, A geometric construction of measure preserving transformations, in: Proc. Fifth Berkeley Symposium on Mathematical Statistics and Probability, Vol. II, Part 2, Univ. of California Press, 1965, 335-360.
- [Cha2] R. V. Chacon, Approximation and spectral multiplicity, in: Contributions to Ergodic Theory and Probability, Lecture Notes in Math. 160, Springer, 1970, 18-27.
- [Fer1] S. Ferenczi, Systèmes localement de rang un, Ann. Inst. H. Poincaré Probab. Statist. 20 (1984), 35-51. Zbl0535.28010
- [Fer2] S. Ferenczi, Tiling and local rank properties of the Morse sequence, Theoret. Comput. Sci., to appear.
- [GKLL] G. R. Goodson, J. Kwiatkowski, M. Lemańczyk and P. Liardet, On the multiplicity function of ergodic group extensions of rotations, this volume, 157-174. Zbl0830.28009
- [GoLe] G. R. Goodson and M. Lemańczyk, On the rank of a class of bijective substitutions, Studia Math. 96 (1990), 219-230. Zbl0711.28007
- [delJ] A. del Junco, A transformation with simple spectrum which is not rank one, Canad. J. Math. 29 (1977), 655-663. Zbl0335.28010
- [Kea1] M. Keane, Generalized Morse sequences, Z. Wahrsch. Verw. Gebiete 10 (1968), 335-353. Zbl0162.07201
- [Kea2] M. Keane, Strongly mixing g-measures, Invent. Math. 16 (1972), 309-353. Zbl0241.28014
- [Kwi] J. Kwiatkowski, Isomorphism of regular Morse dynamical systems, Studia Math. 72 (1982), 59-89. Zbl0525.28018
- [KwRo] J. Kwiatkowski and T. Rojek, A method of solving a cocycle functional equation and applications, ibid. 99 (1991), 69-86. Zbl0734.28016
- [KwSi] J. Kwiatkowski and A. Sikorski, Spectral properties of G-symbolic Morse shifts, Bull. Soc. Math. France 115 (1987), 19-33. Zbl0624.28014
- [Lem] M. Lemańczyk, Toeplitz Z₂-extensions, Ann. Inst. H. Poincaré Probab. Statist. 24 (1988), 1-43.
- [Mar1] J. C. Martin, Generalized Morse sequences on n symbols, Proc. Amer. Math. Soc. 54 (1976), 379-383.
- [Mar2] J. C. Martin, The structure of generalized Morse minimal sets on n symbols, Trans. Amer. Math. Soc. 232 (1977), 343-355.
- [MaNa] J. Mathew and M. G. Nadkarni, A measure preserving transformation whose spectrum has Lebesgue component of multiplicity two, Bull. London Math. Soc. 16 (1984), 402-406. Zbl0515.28010
- [Men1] M. Mentzen, Some examples of automorphisms with rank r and simple spectrum, Bull. Polish Acad. Sci. Math. 35 (1987), 417-424. Zbl0675.28006
- [Men2] M. Mentzen, Thesis, preprint no. 2/89, Nicholas Copernicus University, Toruń 1989.
- [New] D. Newton, On canonical factors of ergodic dynamical systems, J. London Math. Soc. 19 (1979), 129-136. Zbl0425.28012
- [ORW] D. S. Ornstein, D. J. Rudolph and B. Weiss, Equivalence of measure preserving transformations, Mem. Amer. Math. Soc. 262 (1982). Zbl0504.28019
- [Par] W. Parry, Compact abelian group extensions of discrete dynamical systems, Z. Wahrsch. Verw. Gebiete 13 (1969), 95-113. Zbl0184.26901
- [Que] M. Queffélec, Substitution Dynamical Systems-Spectral Analysis, Lecture Notes in Math. 1294, Springer, 1987. Zbl0642.28013
- [Rob1] E. A. Robinson, Ergodic measure preserving transformations with arbitrary finite spectral multiplicities, Invent. Math. 72 (1983), 299-314. Zbl0519.28008
- [Rob2] E. A. Robinson, Mixing and spectral multiplicity, Ergodic Theory Dynamical Systems 5 (1985), 617-624. Zbl0565.28013
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.