Rank and spectral multiplicity

Sébastien Ferenczi; Jan Kwiatkowski

Studia Mathematica (1992)

  • Volume: 102, Issue: 2, page 121-144
  • ISSN: 0039-3223

Abstract

top
For a dynamical system (X,T,μ), we investigate the connections between a metric invariant, the rank r(T), and a spectral invariant, the maximal multiplicity m(T). We build examples of systems for which the pair (m(T),r(T)) takes values (m,m) for any integer m ≥ 1 or (p-1, p) for any prime number p ≥ 3.

How to cite

top

Ferenczi, Sébastien, and Kwiatkowski, Jan. "Rank and spectral multiplicity." Studia Mathematica 102.2 (1992): 121-144. <http://eudml.org/doc/215918>.

@article{Ferenczi1992,
abstract = {For a dynamical system (X,T,μ), we investigate the connections between a metric invariant, the rank r(T), and a spectral invariant, the maximal multiplicity m(T). We build examples of systems for which the pair (m(T),r(T)) takes values (m,m) for any integer m ≥ 1 or (p-1, p) for any prime number p ≥ 3.},
author = {Ferenczi, Sébastien, Kwiatkowski, Jan},
journal = {Studia Mathematica},
keywords = {spectral multiplicity; rank; Morse cocycles; measure-preserving transformation; Morse cocycle; dynamical system; metric invariant; spectral invariant; maximal multiplicity},
language = {eng},
number = {2},
pages = {121-144},
title = {Rank and spectral multiplicity},
url = {http://eudml.org/doc/215918},
volume = {102},
year = {1992},
}

TY - JOUR
AU - Ferenczi, Sébastien
AU - Kwiatkowski, Jan
TI - Rank and spectral multiplicity
JO - Studia Mathematica
PY - 1992
VL - 102
IS - 2
SP - 121
EP - 144
AB - For a dynamical system (X,T,μ), we investigate the connections between a metric invariant, the rank r(T), and a spectral invariant, the maximal multiplicity m(T). We build examples of systems for which the pair (m(T),r(T)) takes values (m,m) for any integer m ≥ 1 or (p-1, p) for any prime number p ≥ 3.
LA - eng
KW - spectral multiplicity; rank; Morse cocycles; measure-preserving transformation; Morse cocycle; dynamical system; metric invariant; spectral invariant; maximal multiplicity
UR - http://eudml.org/doc/215918
ER -

References

top
  1. [Age] O. N. Ageev, Dynamical systems with a Lebesgue component of even multiplicity in the spectrum, Mat. Sb. 136 (178) (1988), 307-319 (in Russian). 
  2. [Cha1] R. V. Chacon, A geometric construction of measure preserving transformations, in: Proc. Fifth Berkeley Symposium on Mathematical Statistics and Probability, Vol. II, Part 2, Univ. of California Press, 1965, 335-360. 
  3. [Cha2] R. V. Chacon, Approximation and spectral multiplicity, in: Contributions to Ergodic Theory and Probability, Lecture Notes in Math. 160, Springer, 1970, 18-27. 
  4. [Fer1] S. Ferenczi, Systèmes localement de rang un, Ann. Inst. H. Poincaré Probab. Statist. 20 (1984), 35-51. Zbl0535.28010
  5. [Fer2] S. Ferenczi, Tiling and local rank properties of the Morse sequence, Theoret. Comput. Sci., to appear. 
  6. [GKLL] G. R. Goodson, J. Kwiatkowski, M. Lemańczyk and P. Liardet, On the multiplicity function of ergodic group extensions of rotations, this volume, 157-174. Zbl0830.28009
  7. [GoLe] G. R. Goodson and M. Lemańczyk, On the rank of a class of bijective substitutions, Studia Math. 96 (1990), 219-230. Zbl0711.28007
  8. [delJ] A. del Junco, A transformation with simple spectrum which is not rank one, Canad. J. Math. 29 (1977), 655-663. Zbl0335.28010
  9. [Kea1] M. Keane, Generalized Morse sequences, Z. Wahrsch. Verw. Gebiete 10 (1968), 335-353. Zbl0162.07201
  10. [Kea2] M. Keane, Strongly mixing g-measures, Invent. Math. 16 (1972), 309-353. Zbl0241.28014
  11. [Kwi] J. Kwiatkowski, Isomorphism of regular Morse dynamical systems, Studia Math. 72 (1982), 59-89. Zbl0525.28018
  12. [KwRo] J. Kwiatkowski and T. Rojek, A method of solving a cocycle functional equation and applications, ibid. 99 (1991), 69-86. Zbl0734.28016
  13. [KwSi] J. Kwiatkowski and A. Sikorski, Spectral properties of G-symbolic Morse shifts, Bull. Soc. Math. France 115 (1987), 19-33. Zbl0624.28014
  14. [Lem] M. Lemańczyk, Toeplitz Z₂-extensions, Ann. Inst. H. Poincaré Probab. Statist. 24 (1988), 1-43. 
  15. [Mar1] J. C. Martin, Generalized Morse sequences on n symbols, Proc. Amer. Math. Soc. 54 (1976), 379-383. 
  16. [Mar2] J. C. Martin, The structure of generalized Morse minimal sets on n symbols, Trans. Amer. Math. Soc. 232 (1977), 343-355. 
  17. [MaNa] J. Mathew and M. G. Nadkarni, A measure preserving transformation whose spectrum has Lebesgue component of multiplicity two, Bull. London Math. Soc. 16 (1984), 402-406. Zbl0515.28010
  18. [Men1] M. Mentzen, Some examples of automorphisms with rank r and simple spectrum, Bull. Polish Acad. Sci. Math. 35 (1987), 417-424. Zbl0675.28006
  19. [Men2] M. Mentzen, Thesis, preprint no. 2/89, Nicholas Copernicus University, Toruń 1989. 
  20. [New] D. Newton, On canonical factors of ergodic dynamical systems, J. London Math. Soc. 19 (1979), 129-136. Zbl0425.28012
  21. [ORW] D. S. Ornstein, D. J. Rudolph and B. Weiss, Equivalence of measure preserving transformations, Mem. Amer. Math. Soc. 262 (1982). Zbl0504.28019
  22. [Par] W. Parry, Compact abelian group extensions of discrete dynamical systems, Z. Wahrsch. Verw. Gebiete 13 (1969), 95-113. Zbl0184.26901
  23. [Que] M. Queffélec, Substitution Dynamical Systems-Spectral Analysis, Lecture Notes in Math. 1294, Springer, 1987. Zbl0642.28013
  24. [Rob1] E. A. Robinson, Ergodic measure preserving transformations with arbitrary finite spectral multiplicities, Invent. Math. 72 (1983), 299-314. Zbl0519.28008
  25. [Rob2] E. A. Robinson, Mixing and spectral multiplicity, Ergodic Theory Dynamical Systems 5 (1985), 617-624. Zbl0565.28013

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.