On the multiplicity function of ergodic group extensions, II

Jakub Kwiatkowski; Mariusz Lemańczyk

Studia Mathematica (1995)

  • Volume: 116, Issue: 3, page 207-215
  • ISSN: 0039-3223

Abstract

top
For an arbitrary set A + containing 1, an ergodic automorphism T whose set of essential values of the multiplicity function is equal to A is constructed. If A is additionally finite, T can be chosen to be an analytic diffeomorphism on a finite-dimensional torus.

How to cite

top

Kwiatkowski, Jakub, and Lemańczyk, Mariusz. "On the multiplicity function of ergodic group extensions, II." Studia Mathematica 116.3 (1995): 207-215. <http://eudml.org/doc/216228>.

@article{Kwiatkowski1995,
abstract = {For an arbitrary set $A ⊆ ℕ^+$ containing 1, an ergodic automorphism T whose set of essential values of the multiplicity function is equal to A is constructed. If A is additionally finite, T can be chosen to be an analytic diffeomorphism on a finite-dimensional torus.},
author = {Kwiatkowski, Jakub, Lemańczyk, Mariusz},
journal = {Studia Mathematica},
keywords = {ergodic group extensions; multiplicity function; Morse automorphisms; weakly mixing},
language = {eng},
number = {3},
pages = {207-215},
title = {On the multiplicity function of ergodic group extensions, II},
url = {http://eudml.org/doc/216228},
volume = {116},
year = {1995},
}

TY - JOUR
AU - Kwiatkowski, Jakub
AU - Lemańczyk, Mariusz
TI - On the multiplicity function of ergodic group extensions, II
JO - Studia Mathematica
PY - 1995
VL - 116
IS - 3
SP - 207
EP - 215
AB - For an arbitrary set $A ⊆ ℕ^+$ containing 1, an ergodic automorphism T whose set of essential values of the multiplicity function is equal to A is constructed. If A is additionally finite, T can be chosen to be an analytic diffeomorphism on a finite-dimensional torus.
LA - eng
KW - ergodic group extensions; multiplicity function; Morse automorphisms; weakly mixing
UR - http://eudml.org/doc/216228
ER -

References

top
  1. [1] L. M. Abramov, Metric automorphisms with quasi-discrete spectrum, Izv. Akad. Nauk SSSR 26 (1962), 513-550 (in Russian). 
  2. [2] O. N. Ageev, Dynamical systems with a Lebesgue component of even multiplicity in the spectrum, Mat. Sb. 136 (178) (1988), 307-319 (in Russian). 
  3. [3] F. Blanchard and M. Lemańczyk, Measure preserving diffeomorphisms with an arbitrary spectral multiplicity, Topol. Methods Nonlinear Anal. 1 (1993), 275-294. Zbl0793.28012
  4. [4] I. P. Cornfeld, S. V. Fomin and Ya. G. Sinai, Ergodic Theory, Springer, 1981. 
  5. [5] S. Ferenczi and J. Kwiatkowski, Rank and spectral multiplicity, Studia Math. 102 (1992), 121-144. Zbl0809.28013
  6. [6] S. Ferenczi, J. Kwiatkowski and C. Mauduit, Density theorem for (multiplicity, rank) pairs, J. Anal. Math., to appear. Zbl0833.28010
  7. [7] G. R. Goodson, On the spectral multiplicity of a class of finite rank transformations, Proc. Amer. Math. Soc. 93 (1985), 303-306. Zbl0551.28019
  8. [8] G. R. Goodson, J. Kwiatkowski, M. Lemańczyk and P. Liardet, On the multiplicity function of ergodic group extensions of rotations, Studia Math. 102 (1992), 157-174. Zbl0830.28009
  9. [9] G. R. Goodson and M. Lemańczyk, On the rank of a class of bijective substitutions, ibid. 96 (1990), 219-230. Zbl0711.28007
  10. [10] A. del Junco and D. Rudolph, Simple rigid rank-1, Ergodic Theory Dynam. Systems 7 (1987), 229-247. Zbl0634.54020
  11. [11] A. B. Katok, Constructions in ergodic theory, preprint. Zbl1030.37001
  12. [12] A. B. Katok and A. M. Stepin, Approximations in ergodic theory, Uspekhi Mat. Nauk 22 (5) (1967), 81-106 (in Russian); English transl.: Russian Math. Surveys 15 (1967), 1-22. Zbl0172.07202
  13. [13] J. King, Joining-rank and the structure of finite rank mixing transformations, J. Anal. Math. 51 (1988), 182-227. Zbl0665.28010
  14. [14] J. Kwiatkowski and A. Sikorski, Spectral properties of G-symbolic Morse shifts, Bull. Soc. Math. France 115 (1987), 19-33. Zbl0624.28014
  15. [15] M. Lemańczyk, Toeplitz Z 2 -extensions, Ann. Inst. H. Poincaré Probab. Statist. 24 (1988), 1-43. 
  16. [16] J. Mathew and M. G. Nadkarni, A measure preserving transformation whose spectrum has Lebesgue component of multiplicity two, Bull. London Math. Soc. 16 (1984), 402-406. Zbl0515.28010
  17. [17] M. K. Mentzen, Some examples of automorphisms with rank r and simple spectrum, Bull. Polish Acad. Sci. 35 (1987), 417-424. Zbl0675.28006
  18. [18] V. I. Oseledec, The spectrum of ergodic automorphisms, Dokl. Akad. Nauk SSSR 168 (1966), 776-779 (in Russian). Zbl0152.33404
  19. [19] W. Parry, Topics in Ergodic Theory, Cambridge Univ. Press, 1981. Zbl0449.28016
  20. [20] M. Queffélec, Substitution Dynamical Systems - Spectral Analysis, Lecture Notes in Math. 1294, Springer 1987. Zbl0642.28013
  21. [21] E. A. Robinson, Ergodic measure preserving transformations with arbitrary finite spectral multiplicities, Invent. Math. 72 (1983), 299-314. Zbl0519.28008
  22. [22] E. A. Robinson, Transformations with highly nonhomogeneous spectrum of finite multiplicity, Israel J. Math. 56 (1986), 75-88. Zbl0614.28012
  23. [23] E. A. Robinson, Spectral multiplicity for non-abelian Morse sequences, in: Lecture Notes in Math. 1342, Springer, 1988, 645-652. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.