# Factors of ergodic group extensions of rotations

Studia Mathematica (1992)

- Volume: 103, Issue: 2, page 123-131
- ISSN: 0039-3223

## Access Full Article

top## Abstract

top## How to cite

topKwiatkowski, Jan. "Factors of ergodic group extensions of rotations." Studia Mathematica 103.2 (1992): 123-131. <http://eudml.org/doc/215940>.

@article{Kwiatkowski1992,

abstract = {Diagonal metric subgroups of the metric centralizer $C(T_φ)$ of group extensions are investigated. Any diagonal compact subgroup Z of $C(T_φ)$ is determined by a compact subgroup Y of a given metric compact abelian group X, by a family $\{v_y : y ∈ Y\}$, of group automorphisms and by a measurable function f:X → G (G a metric compact abelian group). The group Z consists of the triples $(y,F_y,v_y)$, y ∈ Y, where $F_y(x) = v_y(f(x)) - f(x+y)$, x ∈ X.},

author = {Kwiatkowski, Jan},

journal = {Studia Mathematica},

keywords = {group extension; cocycle; ergodic group extensions; rotations; metric subgroups; metric centralizer},

language = {eng},

number = {2},

pages = {123-131},

title = {Factors of ergodic group extensions of rotations},

url = {http://eudml.org/doc/215940},

volume = {103},

year = {1992},

}

TY - JOUR

AU - Kwiatkowski, Jan

TI - Factors of ergodic group extensions of rotations

JO - Studia Mathematica

PY - 1992

VL - 103

IS - 2

SP - 123

EP - 131

AB - Diagonal metric subgroups of the metric centralizer $C(T_φ)$ of group extensions are investigated. Any diagonal compact subgroup Z of $C(T_φ)$ is determined by a compact subgroup Y of a given metric compact abelian group X, by a family ${v_y : y ∈ Y}$, of group automorphisms and by a measurable function f:X → G (G a metric compact abelian group). The group Z consists of the triples $(y,F_y,v_y)$, y ∈ Y, where $F_y(x) = v_y(f(x)) - f(x+y)$, x ∈ X.

LA - eng

KW - group extension; cocycle; ergodic group extensions; rotations; metric subgroups; metric centralizer

UR - http://eudml.org/doc/215940

ER -

## References

top- [1] L. Baggett, On circle-valued cocycles of an ergodic measure-preserving transformation, Israel J. Math. 61 (1988), 29-38. Zbl0652.28004
- [2] A. del Junco and D. Rudolph, On ergodic actions whose self-joinings are graphs, Ergodic Theory Dynamical Systems 7 (1987), 531-557. Zbl0646.60010
- [3] M. Lemańczyk and P. Liardet, Coalescence of Anzai skew products, preprint.
- [4] M. Lemańczyk and M. K. Mentzen, Compact subgroups in the centralizer of natural factors of an ergodic group extension of a rotation determine all factors, Ergodic Theory Dynamical Systems 10 (1990), 763-776. Zbl0725.54030
- [5] D. Newton, On canonical factors of ergodic dynamical systems, J. London Math. Soc. (2) 19 (1979), 129-136. Zbl0425.28012
- [6] W. Parry, Compact abelian group extensions of discrete dynamical systems, Z. Wahrsch. Verw. Gebiete 13 (1969), 95-113. Zbl0184.26901
- [7] M. Rychlik, The Wiener lemma and cocycles, Proc. Amer. Math. Soc. 104 (1988), 932-933. Zbl0687.58018
- [8] W. A. Veech, Strict ergodicity in zero dimensional dynamical systems and the Kronecker-Weyl theorem mod 2, Trans. Amer. Math. Soc. 140 (1969), 1-33. Zbl0201.05601

## Citations in EuDML Documents

top## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.