Isometric extensions, 2-cocycles and ergodicity of skew products
Alexandre Danilenko; Mariusz Lemańczyk
Studia Mathematica (1999)
- Volume: 137, Issue: 2, page 123-142
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topDanilenko, Alexandre, and Lemańczyk, Mariusz. "Isometric extensions, 2-cocycles and ergodicity of skew products." Studia Mathematica 137.2 (1999): 123-142. <http://eudml.org/doc/216679>.
@article{Danilenko1999,
abstract = {We establish existence and uniqueness of a canonical form for isometric extensions of an ergodic non-singular transformation T. This is applied to describe the structure of commutors of the isometric extensions. Moreover, for a compact group G, we construct a G-valued T-cocycle α which generates the ergodic skew product extension $T_α$ and admits a prescribed subgroup in the centralizer of $T_α$.},
author = {Danilenko, Alexandre, Lemańczyk, Mariusz},
journal = {Studia Mathematica},
keywords = {ergodic transformation; cocycle; isometric extension; nonsingular transformation; centralizer; ergodicity},
language = {eng},
number = {2},
pages = {123-142},
title = {Isometric extensions, 2-cocycles and ergodicity of skew products},
url = {http://eudml.org/doc/216679},
volume = {137},
year = {1999},
}
TY - JOUR
AU - Danilenko, Alexandre
AU - Lemańczyk, Mariusz
TI - Isometric extensions, 2-cocycles and ergodicity of skew products
JO - Studia Mathematica
PY - 1999
VL - 137
IS - 2
SP - 123
EP - 142
AB - We establish existence and uniqueness of a canonical form for isometric extensions of an ergodic non-singular transformation T. This is applied to describe the structure of commutors of the isometric extensions. Moreover, for a compact group G, we construct a G-valued T-cocycle α which generates the ergodic skew product extension $T_α$ and admits a prescribed subgroup in the centralizer of $T_α$.
LA - eng
KW - ergodic transformation; cocycle; isometric extension; nonsingular transformation; centralizer; ergodicity
UR - http://eudml.org/doc/216679
ER -
References
top- [Br] L. G. Brown, Topologically complete groups, Proc. Amer. Math. Soc. 35 (1972), 593-600. Zbl0251.22001
- [D1] A. I. Danilenko, Comparison of cocycles of measured equivalence relations and lifting problems, Ergodic Theory Dynam. Systems 18 (1998), 125-151. Zbl0919.28015
- [D2] A. I. Danilenko, On cocycles with values in group extensions. Generic results, Mat. Analiz Geom., to appear. Zbl0963.22004
- [DG] A. I. Danilenko and V. Ya. Golodets, Extension of cocycles to normalizer elements, outer conjugacy and related problems, Trans. Amer. Math. Soc. 348 (1996), 4857-4882. Zbl0862.46040
- [FL] S. Ferenczi and M. Lemańczyk, Rank is not a spectral invariant, Studia Math. 98 (1991), 227-230. Zbl0728.28014
- [GLS] P. Gabriel, M. Lemańczyk and K. Schmidt, Extensions of cocycles for hyperfinite actions and applications, Monatsh. Math. 123 (1997), 209-228. Zbl0887.28008
- [Ha] T. Hamachi, On a minimal group cover of an ergodic finite extension, preprint.
- [JLM] A. del Junco, M. Lemańczyk and M. Mentzen, Semisimplicity, joinings, and group extensions, Studia Math. 112 (1995), 141-164. Zbl0814.28007
- [Ki] J. King, The commutant is the weak closure of the powers, for rank-1 transformations, Ergodic Theory Dynam. Systems 6 (1986), 363-384. Zbl0595.47005
- [Kw] J. Kwiatkowski, Factors of ergodic group extensions of rotations, Studia Math. 103 (1992), 123-131. Zbl0809.28014
- [Le] M. Lemańczyk, Cohomology groups, multipliers and factors in ergodic theory, ibid. 122 (1997), 275-288. Zbl0884.28012
- [Me] M. K. Mentzen, Ergodic properties of group extensions of dynamical systems with discrete spectra, ibid. 101 (1991), 20-31.
- [Ne] D. Newton, On canonical factors of ergodic dynamical systems, J. London Math. Soc. 19 (1979), 129-136. Zbl0425.28012
- [Pa] K. R. Parthasarathy, Multipliers on Locally Compact Groups, Lecture Notes in Math. 93, Springer, 1969.
- [Sc] K. Schmidt, Lectures on Cocycles of Ergodic Transformation Groups, Lecture Notes in Math. 1, Macmillan, 1977.
- [Z1] R. Zimmer, Extensions of ergodic group actions, Illinois J. Math. 20 (1976), 373-409. Zbl0334.28015
- [Z2] R. Zimmer, Ergodic Theory and Semisimple Lie Groups, Birkhäuser, Boston, 1984.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.