Isometric extensions, 2-cocycles and ergodicity of skew products

Alexandre Danilenko; Mariusz Lemańczyk

Studia Mathematica (1999)

  • Volume: 137, Issue: 2, page 123-142
  • ISSN: 0039-3223

Abstract

top
We establish existence and uniqueness of a canonical form for isometric extensions of an ergodic non-singular transformation T. This is applied to describe the structure of commutors of the isometric extensions. Moreover, for a compact group G, we construct a G-valued T-cocycle α which generates the ergodic skew product extension T α and admits a prescribed subgroup in the centralizer of T α .

How to cite

top

Danilenko, Alexandre, and Lemańczyk, Mariusz. "Isometric extensions, 2-cocycles and ergodicity of skew products." Studia Mathematica 137.2 (1999): 123-142. <http://eudml.org/doc/216679>.

@article{Danilenko1999,
abstract = {We establish existence and uniqueness of a canonical form for isometric extensions of an ergodic non-singular transformation T. This is applied to describe the structure of commutors of the isometric extensions. Moreover, for a compact group G, we construct a G-valued T-cocycle α which generates the ergodic skew product extension $T_α$ and admits a prescribed subgroup in the centralizer of $T_α$.},
author = {Danilenko, Alexandre, Lemańczyk, Mariusz},
journal = {Studia Mathematica},
keywords = {ergodic transformation; cocycle; isometric extension; nonsingular transformation; centralizer; ergodicity},
language = {eng},
number = {2},
pages = {123-142},
title = {Isometric extensions, 2-cocycles and ergodicity of skew products},
url = {http://eudml.org/doc/216679},
volume = {137},
year = {1999},
}

TY - JOUR
AU - Danilenko, Alexandre
AU - Lemańczyk, Mariusz
TI - Isometric extensions, 2-cocycles and ergodicity of skew products
JO - Studia Mathematica
PY - 1999
VL - 137
IS - 2
SP - 123
EP - 142
AB - We establish existence and uniqueness of a canonical form for isometric extensions of an ergodic non-singular transformation T. This is applied to describe the structure of commutors of the isometric extensions. Moreover, for a compact group G, we construct a G-valued T-cocycle α which generates the ergodic skew product extension $T_α$ and admits a prescribed subgroup in the centralizer of $T_α$.
LA - eng
KW - ergodic transformation; cocycle; isometric extension; nonsingular transformation; centralizer; ergodicity
UR - http://eudml.org/doc/216679
ER -

References

top
  1. [Br] L. G. Brown, Topologically complete groups, Proc. Amer. Math. Soc. 35 (1972), 593-600. Zbl0251.22001
  2. [D1] A. I. Danilenko, Comparison of cocycles of measured equivalence relations and lifting problems, Ergodic Theory Dynam. Systems 18 (1998), 125-151. Zbl0919.28015
  3. [D2] A. I. Danilenko, On cocycles with values in group extensions. Generic results, Mat. Analiz Geom., to appear. Zbl0963.22004
  4. [DG] A. I. Danilenko and V. Ya. Golodets, Extension of cocycles to normalizer elements, outer conjugacy and related problems, Trans. Amer. Math. Soc. 348 (1996), 4857-4882. Zbl0862.46040
  5. [FL] S. Ferenczi and M. Lemańczyk, Rank is not a spectral invariant, Studia Math. 98 (1991), 227-230. Zbl0728.28014
  6. [GLS] P. Gabriel, M. Lemańczyk and K. Schmidt, Extensions of cocycles for hyperfinite actions and applications, Monatsh. Math. 123 (1997), 209-228. Zbl0887.28008
  7. [Ha] T. Hamachi, On a minimal group cover of an ergodic finite extension, preprint. 
  8. [JLM] A. del Junco, M. Lemańczyk and M. Mentzen, Semisimplicity, joinings, and group extensions, Studia Math. 112 (1995), 141-164. Zbl0814.28007
  9. [Ki] J. King, The commutant is the weak closure of the powers, for rank-1 transformations, Ergodic Theory Dynam. Systems 6 (1986), 363-384. Zbl0595.47005
  10. [Kw] J. Kwiatkowski, Factors of ergodic group extensions of rotations, Studia Math. 103 (1992), 123-131. Zbl0809.28014
  11. [Le] M. Lemańczyk, Cohomology groups, multipliers and factors in ergodic theory, ibid. 122 (1997), 275-288. Zbl0884.28012
  12. [Me] M. K. Mentzen, Ergodic properties of group extensions of dynamical systems with discrete spectra, ibid. 101 (1991), 20-31. 
  13. [Ne] D. Newton, On canonical factors of ergodic dynamical systems, J. London Math. Soc. 19 (1979), 129-136. Zbl0425.28012
  14. [Pa] K. R. Parthasarathy, Multipliers on Locally Compact Groups, Lecture Notes in Math. 93, Springer, 1969. 
  15. [Sc] K. Schmidt, Lectures on Cocycles of Ergodic Transformation Groups, Lecture Notes in Math. 1, Macmillan, 1977. 
  16. [Z1] R. Zimmer, Extensions of ergodic group actions, Illinois J. Math. 20 (1976), 373-409. Zbl0334.28015
  17. [Z2] R. Zimmer, Ergodic Theory and Semisimple Lie Groups, Birkhäuser, Boston, 1984. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.