Conjugate martingale transforms

Ferenc Weisz

Studia Mathematica (1992)

  • Volume: 103, Issue: 2, page 207-220
  • ISSN: 0039-3223

Abstract

top
Characterizations of H₁, BMO and VMO martingale spaces generated by bounded Vilenkin systems via conjugate martingale transforms are studied.

How to cite

top

Weisz, Ferenc. "Conjugate martingale transforms." Studia Mathematica 103.2 (1992): 207-220. <http://eudml.org/doc/215945>.

@article{Weisz1992,
abstract = {Characterizations of H₁, BMO and VMO martingale spaces generated by bounded Vilenkin systems via conjugate martingale transforms are studied.},
author = {Weisz, Ferenc},
journal = {Studia Mathematica},
keywords = {Riesz transforms; Rademacher series; BMO and VMO martingale spaces; Vilenkin systems; conjugate martingale transforms},
language = {eng},
number = {2},
pages = {207-220},
title = {Conjugate martingale transforms},
url = {http://eudml.org/doc/215945},
volume = {103},
year = {1992},
}

TY - JOUR
AU - Weisz, Ferenc
TI - Conjugate martingale transforms
JO - Studia Mathematica
PY - 1992
VL - 103
IS - 2
SP - 207
EP - 220
AB - Characterizations of H₁, BMO and VMO martingale spaces generated by bounded Vilenkin systems via conjugate martingale transforms are studied.
LA - eng
KW - Riesz transforms; Rademacher series; BMO and VMO martingale spaces; Vilenkin systems; conjugate martingale transforms
UR - http://eudml.org/doc/215945
ER -

References

top
  1. [1] R. Bañuelos, A note on martingale transforms and A p -weights, Studia Math. 85 (1987), 125-135. Zbl0657.42015
  2. [2] D. L. Burkholder, Distribution function inequalities for martingales, Ann. Probab. 1 (1973), 19-42. Zbl0301.60035
  3. [3] D. L. Burkholder and R. F. Gundy, Extrapolation and interpolation of quasi-linear operators on martingales, Acta Math. 124 (1970), 249-304. Zbl0223.60021
  4. [4] J. A. Chao, Conjugate characterizations of H¹ dyadic martingales, Math. Ann. 240 (1979), 63-67. Zbl0403.42016
  5. [5] J. A. Chao, Hardy spaces on regular martingales, in: Martingale Theory in Harmonic Analysis and Banach Spaces, Lecture Notes in Math. 939, Springer, Berlin 1982, 18-28. 
  6. [6] J. A. Chao, H p spaces of conjugate systems on local fields, Studia Math. 49 (1974), 267-287. Zbl0247.31014
  7. [7] J. A. Chao, Lusin area functions on local fields, Pacific J. Math. 59 (1975), 383-390. Zbl0313.43017
  8. [8] J. A. Chao and J. Janson, A note on H¹ q-martingales, ibid. 97 (1981), 307-317. Zbl0438.60041
  9. [9] J. A. Chao and M. H. Taibleson, A sub-regularity inequality for conjugate systems on local fields, Studia Math. 46 (1973), 249-257. Zbl0258.46046
  10. [10] J. A. Chao and M. H. Taibleson, Generalized conjugate systems on local fields, ibid. 64 (1979), 213-225. Zbl0414.43003
  11. [11] C. Fefferman and E. M. Stein, H p spaces of several variables, Acta Math. 129 (1972), 137-194. Zbl0257.46078
  12. [12] A. M. Garsia, Martingale Inequalities. Seminar Notes on Recent Progress, Math. Lecture Note Ser., Benjamin, New York 1973. 
  13. [13] R. F. Gundy, Inégalités pour martingales à un et deux indices: L’espace H p , in: Ecole d’Eté de Probabilités de Saint-Flour VIII-1978, Lecture Notes in Math. 774, Springer, Berlin 1980, 251-331. 
  14. [14] R. F. Gundy and N. T. Varopoulos, A martingale that occurs in harmonic analysis, Ark. Mat. 14 (1976), 179-187. Zbl0371.60058
  15. [15] S. Janson, Characterizations of H¹ by singular integral transforms on martingales and n , Math. Scand. 41 (1977), 140-152. Zbl0369.42005
  16. [16] S. Janson, On functions with conditions on the mean oscillation, Ark. Mat. 14 (1976), 189-196. Zbl0341.43005
  17. [17] J. Neveu, Discrete-Parameter Martingales, North-Holland, 1971. 
  18. [18] F. Schipp, On L p -norm convergence of series with respect to product systems, Anal. Math. 2 (1976), 49-64. Zbl0364.40009
  19. [19] F. Schipp, W. R. Wade, P. Simon and J. Pál, Walsh Series: An Introduction to Dyadic Harmonic Analysis, Akadémiai Kiadó, 1990. Zbl0727.42017
  20. [20] P. Simon, Investigations with respect to the Vilenkin system, Ann. Univ. Sci. Budapest Eötvös Sect. Math. 28 (1985), 87-101. Zbl0586.43001
  21. [21] P. Simon, On the concept of a conjugate function, in: Fourier Analysis and Approximation Theory, Budapest 1978, Colloq. Math. Soc. J. Bolyai 1, 747-755. 
  22. [22] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, N.J., 1970. Zbl0207.13501
  23. [23] M. H. Taibleson, Fourier Analysis on Local Fields, Princeton Univ. Press, Princeton, N.J., 1975. 
  24. [24] A. Torchinsky, Real-Variable Methods in Harmonic Analysis, Academic Press, New York 1986. Zbl0621.42001
  25. [25] A. Uchiyama, A constructive proof of the Fefferman-Stein decomposition of BMO on simple martingales, in: Conference on Harmonic Analysis in Honor of Antoni Zygmund, Chicago 1981, W. Beckner, A. Calderón, R. Fefferman and P. W. Jones (eds.), Wadsworth, Belmont, Calif., 1983, 495-505. 
  26. [26] N. Ya. Vilenkin, On a class of complete orthonormal systems, Izv. Akad. Nauk SSSR Ser. Mat. 11 (1947), 363-400. Zbl0036.35601
  27. [27] F. Weisz, Inequalities relative to two-parameter Vilenkin-Fourier coefficients, Studia Math. 99 (1991), 221-233. Zbl0728.60046
  28. [28] F. Weisz, Martingale Hardy spaces for 0 < p ≤ 1, Probab. Theory Related Fields 84 (1990), 361-376. Zbl0687.60046

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.