Weak uniform normal structure in direct sum spaces

Tomás Domínguez Benavides

Studia Mathematica (1992)

  • Volume: 103, Issue: 3, page 283-290
  • ISSN: 0039-3223

Abstract

top
The weak normal structure coefficient WCS(X) is computed or bounded when X is a finite or infinite direct sum of reflexive Banach spaces with a monotone norm.

How to cite

top

Domínguez Benavides, Tomás. "Weak uniform normal structure in direct sum spaces." Studia Mathematica 103.3 (1992): 283-290. <http://eudml.org/doc/215951>.

@article{DomínguezBenavides1992,
abstract = {The weak normal structure coefficient WCS(X) is computed or bounded when X is a finite or infinite direct sum of reflexive Banach spaces with a monotone norm.},
author = {Domínguez Benavides, Tomás},
journal = {Studia Mathematica},
keywords = {normal structure; Orlicz sequence spaces; substitution norm; nondiametral point; weak normal structure coefficient; direct sum of reflexive Banach spaces with a monotone norm},
language = {eng},
number = {3},
pages = {283-290},
title = {Weak uniform normal structure in direct sum spaces},
url = {http://eudml.org/doc/215951},
volume = {103},
year = {1992},
}

TY - JOUR
AU - Domínguez Benavides, Tomás
TI - Weak uniform normal structure in direct sum spaces
JO - Studia Mathematica
PY - 1992
VL - 103
IS - 3
SP - 283
EP - 290
AB - The weak normal structure coefficient WCS(X) is computed or bounded when X is a finite or infinite direct sum of reflexive Banach spaces with a monotone norm.
LA - eng
KW - normal structure; Orlicz sequence spaces; substitution norm; nondiametral point; weak normal structure coefficient; direct sum of reflexive Banach spaces with a monotone norm
UR - http://eudml.org/doc/215951
ER -

References

top
  1. [Be] B. Beauzamy, Introduction to Banach Spaces and their Geometry, North-Holland, Amsterdam 1982. 
  2. [B] W. L. Bynum, Normal structure coefficients for Banach spaces, Pacific J. Math. 86 (1980), 427-435. Zbl0442.46018
  3. [C] E. Casini, Degree of convexity and product spaces, Comment. Math. Univ. Carolinae 31 (4) (1990), 637-641. Zbl0721.46011
  4. [D1] T. Domí nguez Benavides, Some properties of the set and ball measures of non-compactness and applications, J. London Math. Soc. 34 (2) (1986), 120-128. 
  5. [D2] T. Domí nguez Benavides and G. Lopez Acedo, Lower bounds for normal structure coefficients, Proc. Roy. Soc. Edinburgh Sect. A, to appear. 
  6. [D3] T. Domí nguez Benavides and R. J. Rodriguez, Some geometrical constants in Orlicz sequence spaces, Nonlinear Anal., to appear. 
  7. [K] C. A. Kottmann, Subsets of the unit ball that are separated by more than one, Studia Math. 53 (1975), 15-25. 
  8. [L1] T. Landes, Permanence property of normal structure, Pacific J. Math. 111 (1) (1984), 125-143. Zbl0534.46015
  9. [L2] T. Landes, Normal structure and the sum property, ibid. 123 (1) (1986), 127-147. 
  10. [Li] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I, Springer, Berlin 1977. Zbl0362.46013
  11. [M] E. Maluta, Uniform normal structure and related coefficients, Pacific J. Math. 111 (1984), 357-367. Zbl0495.46012
  12. [Pa] J. P. Partington, On nearly uniformly convex Banach spaces, Math. Proc. Cambridge Philos. Soc. 93 (1983), 127-129. Zbl0507.46011
  13. [P] S. Prus, On Bynum's fixed point theorem, Atti Sem. Mat. Fis. Univ. Modena 38 (1990), 535-545. Zbl0724.46020
  14. [S] M. A. Smith, Rotundity and extremity in p ( X i ) and L p ( μ , X ) , in: Contemp. Math. 52, Amer. Math. Soc., 1986, 143-162. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.