# Weak uniform normal structure in direct sum spaces

Studia Mathematica (1992)

- Volume: 103, Issue: 3, page 283-290
- ISSN: 0039-3223

## Access Full Article

top## Abstract

top## How to cite

topDomínguez Benavides, Tomás. "Weak uniform normal structure in direct sum spaces." Studia Mathematica 103.3 (1992): 283-290. <http://eudml.org/doc/215951>.

@article{DomínguezBenavides1992,

abstract = {The weak normal structure coefficient WCS(X) is computed or bounded when X is a finite or infinite direct sum of reflexive Banach spaces with a monotone norm.},

author = {Domínguez Benavides, Tomás},

journal = {Studia Mathematica},

keywords = {normal structure; Orlicz sequence spaces; substitution norm; nondiametral point; weak normal structure coefficient; direct sum of reflexive Banach spaces with a monotone norm},

language = {eng},

number = {3},

pages = {283-290},

title = {Weak uniform normal structure in direct sum spaces},

url = {http://eudml.org/doc/215951},

volume = {103},

year = {1992},

}

TY - JOUR

AU - Domínguez Benavides, Tomás

TI - Weak uniform normal structure in direct sum spaces

JO - Studia Mathematica

PY - 1992

VL - 103

IS - 3

SP - 283

EP - 290

AB - The weak normal structure coefficient WCS(X) is computed or bounded when X is a finite or infinite direct sum of reflexive Banach spaces with a monotone norm.

LA - eng

KW - normal structure; Orlicz sequence spaces; substitution norm; nondiametral point; weak normal structure coefficient; direct sum of reflexive Banach spaces with a monotone norm

UR - http://eudml.org/doc/215951

ER -

## References

top- [Be] B. Beauzamy, Introduction to Banach Spaces and their Geometry, North-Holland, Amsterdam 1982.
- [B] W. L. Bynum, Normal structure coefficients for Banach spaces, Pacific J. Math. 86 (1980), 427-435. Zbl0442.46018
- [C] E. Casini, Degree of convexity and product spaces, Comment. Math. Univ. Carolinae 31 (4) (1990), 637-641. Zbl0721.46011
- [D1] T. Domí nguez Benavides, Some properties of the set and ball measures of non-compactness and applications, J. London Math. Soc. 34 (2) (1986), 120-128.
- [D2] T. Domí nguez Benavides and G. Lopez Acedo, Lower bounds for normal structure coefficients, Proc. Roy. Soc. Edinburgh Sect. A, to appear.
- [D3] T. Domí nguez Benavides and R. J. Rodriguez, Some geometrical constants in Orlicz sequence spaces, Nonlinear Anal., to appear.
- [K] C. A. Kottmann, Subsets of the unit ball that are separated by more than one, Studia Math. 53 (1975), 15-25.
- [L1] T. Landes, Permanence property of normal structure, Pacific J. Math. 111 (1) (1984), 125-143. Zbl0534.46015
- [L2] T. Landes, Normal structure and the sum property, ibid. 123 (1) (1986), 127-147.
- [Li] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I, Springer, Berlin 1977. Zbl0362.46013
- [M] E. Maluta, Uniform normal structure and related coefficients, Pacific J. Math. 111 (1984), 357-367. Zbl0495.46012
- [Pa] J. P. Partington, On nearly uniformly convex Banach spaces, Math. Proc. Cambridge Philos. Soc. 93 (1983), 127-129. Zbl0507.46011
- [P] S. Prus, On Bynum's fixed point theorem, Atti Sem. Mat. Fis. Univ. Modena 38 (1990), 535-545. Zbl0724.46020
- [S] M. A. Smith, Rotundity and extremity in ${\ell}^{p}\left({X}_{i}\right)$ and ${L}^{p}(\mu ,X)$, in: Contemp. Math. 52, Amer. Math. Soc., 1986, 143-162.

## Citations in EuDML Documents

top## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.