On some geometric properties of certain Köthe sequence spaces
Yunan Cui; Henryk Hudzik; Tao Zhang
Mathematica Bohemica (1999)
- Volume: 124, Issue: 2-3, page 303-314
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topCui, Yunan, Hudzik, Henryk, and Zhang, Tao. "On some geometric properties of certain Köthe sequence spaces." Mathematica Bohemica 124.2-3 (1999): 303-314. <http://eudml.org/doc/248460>.
@article{Cui1999,
abstract = {It is proved that if a Kothe sequence space $X$ is monotone complete and has the weakly convergent sequence coefficient WCS$(X)>1$, then $X$ is order continuous. It is shown that a weakly sequentially complete Kothe sequence space $X$ is compactly locally uniformly rotund if and only if the norm in $X$ is equi-absolutely continuous. The dual of the product space $(\bigoplus \nolimits _\{i=1\}^\{\infty \}X_i)_\{\Phi \}$ of a sequence of Banach spaces $(X_i)_\{i=1\}^\{\infty \}$, which is built by using an Orlicz function $\Phi $ satisfying the $\Delta _2$-condition, is computed isometrically (i.e. the exact norm in the dual is calculated). It is also shown that for any Orlicz function $\Phi $ and any finite system $X_1,\dots ,X_n$ of Banach spaces, we have $\mathop WCS((\bigoplus \nolimits _\{i=1\}^nX_i)_\{\Phi \})=\min \lbrace \mathop WCS(X_i) i=1,\dots ,n\rbrace $ and that if $\Phi $ does not satisfy the $\Delta _2$-condition, then WCS$((\bigoplus \nolimits _\{i=1\}^\{\infty \}X_i) _\{\Phi \})=1$ for any infinite sequence $(X_i)$ of Banach spaces.},
author = {Cui, Yunan, Hudzik, Henryk, Zhang, Tao},
journal = {Mathematica Bohemica},
keywords = {Köthe sequence space; weakly convergent sequence coefficient; order continuity of the norm; absolute continuity of the norm; compact local uniform rotundity; Orlicz sequence space; Luxemburg norm; Orlicz norm; dual space; product space; Köthe sequence space; weakly convergent sequence coefficient; order continuity of the norm; absolute continuity of the norm; compact local uniform rotundity; Orlicz sequence space; Luxemburg norm; Orlicz norm; dual space; product space},
language = {eng},
number = {2-3},
pages = {303-314},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On some geometric properties of certain Köthe sequence spaces},
url = {http://eudml.org/doc/248460},
volume = {124},
year = {1999},
}
TY - JOUR
AU - Cui, Yunan
AU - Hudzik, Henryk
AU - Zhang, Tao
TI - On some geometric properties of certain Köthe sequence spaces
JO - Mathematica Bohemica
PY - 1999
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 124
IS - 2-3
SP - 303
EP - 314
AB - It is proved that if a Kothe sequence space $X$ is monotone complete and has the weakly convergent sequence coefficient WCS$(X)>1$, then $X$ is order continuous. It is shown that a weakly sequentially complete Kothe sequence space $X$ is compactly locally uniformly rotund if and only if the norm in $X$ is equi-absolutely continuous. The dual of the product space $(\bigoplus \nolimits _{i=1}^{\infty }X_i)_{\Phi }$ of a sequence of Banach spaces $(X_i)_{i=1}^{\infty }$, which is built by using an Orlicz function $\Phi $ satisfying the $\Delta _2$-condition, is computed isometrically (i.e. the exact norm in the dual is calculated). It is also shown that for any Orlicz function $\Phi $ and any finite system $X_1,\dots ,X_n$ of Banach spaces, we have $\mathop WCS((\bigoplus \nolimits _{i=1}^nX_i)_{\Phi })=\min \lbrace \mathop WCS(X_i) i=1,\dots ,n\rbrace $ and that if $\Phi $ does not satisfy the $\Delta _2$-condition, then WCS$((\bigoplus \nolimits _{i=1}^{\infty }X_i) _{\Phi })=1$ for any infinite sequence $(X_i)$ of Banach spaces.
LA - eng
KW - Köthe sequence space; weakly convergent sequence coefficient; order continuity of the norm; absolute continuity of the norm; compact local uniform rotundity; Orlicz sequence space; Luxemburg norm; Orlicz norm; dual space; product space; Köthe sequence space; weakly convergent sequence coefficient; order continuity of the norm; absolute continuity of the norm; compact local uniform rotundity; Orlicz sequence space; Luxemburg norm; Orlicz norm; dual space; product space
UR - http://eudml.org/doc/248460
ER -
References
top- J. M. Ayerbe T. Dominguez Benavides G. Lopez Acedo, Compactness Conditions in Metric Fixed Point Theory, OTAA, vol. 99, Birkhäuser, Basel, 1997. (1997)
- M. S. Brodskij D. P. Milman, On the center of convex set, Dokl. Akad. Nauk 59 (1948), 837-840. (In Russian.) (1948) MR0024073
- W. I. Bynum, 10.2140/pjm.1980.86.427, Pacific J. Math. 86 (1980), 427-436. (1980) MR0590555DOI10.2140/pjm.1980.86.427
- S. T. Chen, Geometry of Orlicz Spaces, Dissertationes Math. 356, 1996. (1996) Zbl1089.46500MR1410390
- T. Dominguez Benavides, 10.4064/sm-103-3-283-290, Studia Math. 103 (1992), no. 3, 283-290. (1992) Zbl0810.46015MR1202012DOI10.4064/sm-103-3-283-290
- P. Foralewski H. Hudzik, Some basic properties of generalized Calderón-Lozanovskij spaces, Collect. Math. 48 (1997), no. 4-6. 523-538. (1997) MR1602584
- K. Goebel W. Kirk, Topics in Metrix Fixed Point Theory, Cambridge University Press, Cambridge, 1991. (1991) MR1074005
- A. Kamińska, Flat Orlicz-Musielak sequence spaces, Bull. Polish Acad. Sci. Math. 30 (1982), no. 7-8, 347-352. (1982) MR0707748
- L. V. Kantorovich G. P. Akilov, Functional Analysis, Nauka, Moscow, 1977. (In Russian.) (1977) MR0511615
- T. Landes, 10.2140/pjm.1984.110.125, Pacific J. Math. 110 (1984), 125-143. (1984) Zbl0534.46015MR0722744DOI10.2140/pjm.1984.110.125
- T. C. Lin, 10.1090/S0002-9939-1983-0695255-2, Proc. Amer. Math. Soc. 88 (1983), 262-267. (1983) MR0695255DOI10.1090/S0002-9939-1983-0695255-2
- J. Lindenstrauss L. Tzafriri, Classical Banach Spaces I, Springer-Verlag, Berlin, 1977. (1977) MR0500056
- W. A. J. Luxemburg, Banach Function Spaces, Thesis, Delft, 1955. (1955) Zbl0068.09204MR0072440
- L. Maligranda, Orlicz Spaces and Interpolation, Seminars in Math. 5, Campinas, 1989. (1989) Zbl0874.46022MR2264389
- E. Maluta, 10.2140/pjm.1984.111.357, Pacific J. Math. 111 (1984), 357-369. (1984) Zbl0495.46012MR0734861DOI10.2140/pjm.1984.111.357
- J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Math. 1034, Springer-Verlag, Berlin, 1983. (1983) Zbl0557.46020MR0724434
- B. B. Panda O. P. Kapoor, 10.1016/0022-247X(75)90098-0, J. Math. Anal. Appl. 52 (1975), 300-308. (1975) MR0380365DOI10.1016/0022-247X(75)90098-0
- B. Prus, On Bynum's fixed point theorem, Atti Sem. Mat. Fis. Univ. Modena 38 (1990), 535-545. (1990) Zbl0724.46020MR1076471
- M. M. Rao Z. D. Ren, Theory of Orlicz Spaces, Marcel Dekker Inc., New York, 1991. (1991) MR1113700
- A. E. Taylor D. C. Lay, Introduction to Functional Analysis, John Wiley & Sons, New York (second edition), 1980. (1980) MR0564653
- G. L. Zhang, 10.1090/S0002-9939-1993-1152993-1, Proc. Amer. Math. Soc. 117 (1993), no. 3, 637-643. (1993) Zbl0787.46021MR1152993DOI10.1090/S0002-9939-1993-1152993-1
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.