On some geometric properties of certain Köthe sequence spaces

Yunan Cui; Henryk Hudzik; Tao Zhang

Mathematica Bohemica (1999)

  • Volume: 124, Issue: 2-3, page 303-314
  • ISSN: 0862-7959

Abstract

top
It is proved that if a Kothe sequence space X is monotone complete and has the weakly convergent sequence coefficient WCS ( X ) > 1 , then X is order continuous. It is shown that a weakly sequentially complete Kothe sequence space X is compactly locally uniformly rotund if and only if the norm in X is equi-absolutely continuous. The dual of the product space ( i = 1 X i ) Φ of a sequence of Banach spaces ( X i ) i = 1 , which is built by using an Orlicz function Φ satisfying the Δ 2 -condition, is computed isometrically (i.e. the exact norm in the dual is calculated). It is also shown that for any Orlicz function Φ and any finite system X 1 , , X n of Banach spaces, we have W C S ( ( i = 1 n X i ) Φ ) = min { W C S ( X i ) i = 1 , , n } and that if Φ does not satisfy the Δ 2 -condition, then WCS ( ( i = 1 X i ) Φ ) = 1 for any infinite sequence ( X i ) of Banach spaces.

How to cite

top

Cui, Yunan, Hudzik, Henryk, and Zhang, Tao. "On some geometric properties of certain Köthe sequence spaces." Mathematica Bohemica 124.2-3 (1999): 303-314. <http://eudml.org/doc/248460>.

@article{Cui1999,
abstract = {It is proved that if a Kothe sequence space $X$ is monotone complete and has the weakly convergent sequence coefficient WCS$(X)>1$, then $X$ is order continuous. It is shown that a weakly sequentially complete Kothe sequence space $X$ is compactly locally uniformly rotund if and only if the norm in $X$ is equi-absolutely continuous. The dual of the product space $(\bigoplus \nolimits _\{i=1\}^\{\infty \}X_i)_\{\Phi \}$ of a sequence of Banach spaces $(X_i)_\{i=1\}^\{\infty \}$, which is built by using an Orlicz function $\Phi $ satisfying the $\Delta _2$-condition, is computed isometrically (i.e. the exact norm in the dual is calculated). It is also shown that for any Orlicz function $\Phi $ and any finite system $X_1,\dots ,X_n$ of Banach spaces, we have $\mathop WCS((\bigoplus \nolimits _\{i=1\}^nX_i)_\{\Phi \})=\min \lbrace \mathop WCS(X_i) i=1,\dots ,n\rbrace $ and that if $\Phi $ does not satisfy the $\Delta _2$-condition, then WCS$((\bigoplus \nolimits _\{i=1\}^\{\infty \}X_i) _\{\Phi \})=1$ for any infinite sequence $(X_i)$ of Banach spaces.},
author = {Cui, Yunan, Hudzik, Henryk, Zhang, Tao},
journal = {Mathematica Bohemica},
keywords = {Köthe sequence space; weakly convergent sequence coefficient; order continuity of the norm; absolute continuity of the norm; compact local uniform rotundity; Orlicz sequence space; Luxemburg norm; Orlicz norm; dual space; product space; Köthe sequence space; weakly convergent sequence coefficient; order continuity of the norm; absolute continuity of the norm; compact local uniform rotundity; Orlicz sequence space; Luxemburg norm; Orlicz norm; dual space; product space},
language = {eng},
number = {2-3},
pages = {303-314},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On some geometric properties of certain Köthe sequence spaces},
url = {http://eudml.org/doc/248460},
volume = {124},
year = {1999},
}

TY - JOUR
AU - Cui, Yunan
AU - Hudzik, Henryk
AU - Zhang, Tao
TI - On some geometric properties of certain Köthe sequence spaces
JO - Mathematica Bohemica
PY - 1999
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 124
IS - 2-3
SP - 303
EP - 314
AB - It is proved that if a Kothe sequence space $X$ is monotone complete and has the weakly convergent sequence coefficient WCS$(X)>1$, then $X$ is order continuous. It is shown that a weakly sequentially complete Kothe sequence space $X$ is compactly locally uniformly rotund if and only if the norm in $X$ is equi-absolutely continuous. The dual of the product space $(\bigoplus \nolimits _{i=1}^{\infty }X_i)_{\Phi }$ of a sequence of Banach spaces $(X_i)_{i=1}^{\infty }$, which is built by using an Orlicz function $\Phi $ satisfying the $\Delta _2$-condition, is computed isometrically (i.e. the exact norm in the dual is calculated). It is also shown that for any Orlicz function $\Phi $ and any finite system $X_1,\dots ,X_n$ of Banach spaces, we have $\mathop WCS((\bigoplus \nolimits _{i=1}^nX_i)_{\Phi })=\min \lbrace \mathop WCS(X_i) i=1,\dots ,n\rbrace $ and that if $\Phi $ does not satisfy the $\Delta _2$-condition, then WCS$((\bigoplus \nolimits _{i=1}^{\infty }X_i) _{\Phi })=1$ for any infinite sequence $(X_i)$ of Banach spaces.
LA - eng
KW - Köthe sequence space; weakly convergent sequence coefficient; order continuity of the norm; absolute continuity of the norm; compact local uniform rotundity; Orlicz sequence space; Luxemburg norm; Orlicz norm; dual space; product space; Köthe sequence space; weakly convergent sequence coefficient; order continuity of the norm; absolute continuity of the norm; compact local uniform rotundity; Orlicz sequence space; Luxemburg norm; Orlicz norm; dual space; product space
UR - http://eudml.org/doc/248460
ER -

References

top
  1. J. M. Ayerbe T. Dominguez Benavides G. Lopez Acedo, Compactness Conditions in Metric Fixed Point Theory, OTAA, vol. 99, Birkhäuser, Basel, 1997. (1997) 
  2. M. S. Brodskij D. P. Milman, On the center of convex set, Dokl. Akad. Nauk 59 (1948), 837-840. (In Russian.) (1948) MR0024073
  3. W. I. Bynum, 10.2140/pjm.1980.86.427, Pacific J. Math. 86 (1980), 427-436. (1980) MR0590555DOI10.2140/pjm.1980.86.427
  4. S. T. Chen, Geometry of Orlicz Spaces, Dissertationes Math. 356, 1996. (1996) Zbl1089.46500MR1410390
  5. T. Dominguez Benavides, 10.4064/sm-103-3-283-290, Studia Math. 103 (1992), no. 3, 283-290. (1992) Zbl0810.46015MR1202012DOI10.4064/sm-103-3-283-290
  6. P. Foralewski H. Hudzik, Some basic properties of generalized Calderón-Lozanovskij spaces, Collect. Math. 48 (1997), no. 4-6. 523-538. (1997) MR1602584
  7. K. Goebel W. Kirk, Topics in Metrix Fixed Point Theory, Cambridge University Press, Cambridge, 1991. (1991) MR1074005
  8. A. Kamińska, Flat Orlicz-Musielak sequence spaces, Bull. Polish Acad. Sci. Math. 30 (1982), no. 7-8, 347-352. (1982) MR0707748
  9. L. V. Kantorovich G. P. Akilov, Functional Analysis, Nauka, Moscow, 1977. (In Russian.) (1977) MR0511615
  10. T. Landes, 10.2140/pjm.1984.110.125, Pacific J. Math. 110 (1984), 125-143. (1984) Zbl0534.46015MR0722744DOI10.2140/pjm.1984.110.125
  11. T. C. Lin, 10.1090/S0002-9939-1983-0695255-2, Proc. Amer. Math. Soc. 88 (1983), 262-267. (1983) MR0695255DOI10.1090/S0002-9939-1983-0695255-2
  12. J. Lindenstrauss L. Tzafriri, Classical Banach Spaces I, Springer-Verlag, Berlin, 1977. (1977) MR0500056
  13. W. A. J. Luxemburg, Banach Function Spaces, Thesis, Delft, 1955. (1955) Zbl0068.09204MR0072440
  14. L. Maligranda, Orlicz Spaces and Interpolation, Seminars in Math. 5, Campinas, 1989. (1989) Zbl0874.46022MR2264389
  15. E. Maluta, 10.2140/pjm.1984.111.357, Pacific J. Math. 111 (1984), 357-369. (1984) Zbl0495.46012MR0734861DOI10.2140/pjm.1984.111.357
  16. J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Math. 1034, Springer-Verlag, Berlin, 1983. (1983) Zbl0557.46020MR0724434
  17. B. B. Panda O. P. Kapoor, 10.1016/0022-247X(75)90098-0, J. Math. Anal. Appl. 52 (1975), 300-308. (1975) MR0380365DOI10.1016/0022-247X(75)90098-0
  18. B. Prus, On Bynum's fixed point theorem, Atti Sem. Mat. Fis. Univ. Modena 38 (1990), 535-545. (1990) Zbl0724.46020MR1076471
  19. M. M. Rao Z. D. Ren, Theory of Orlicz Spaces, Marcel Dekker Inc., New York, 1991. (1991) MR1113700
  20. A. E. Taylor D. C. Lay, Introduction to Functional Analysis, John Wiley & Sons, New York (second edition), 1980. (1980) MR0564653
  21. G. L. Zhang, 10.1090/S0002-9939-1993-1152993-1, Proc. Amer. Math. Soc. 117 (1993), no. 3, 637-643. (1993) Zbl0787.46021MR1152993DOI10.1090/S0002-9939-1993-1152993-1

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.