# L-summands in their biduals have Pełczyński's property (V*)

Studia Mathematica (1993)

- Volume: 104, Issue: 1, page 91-98
- ISSN: 0039-3223

## Access Full Article

top## Abstract

top## How to cite

topPfitzner, Hermann. "L-summands in their biduals have Pełczyński's property (V*)." Studia Mathematica 104.1 (1993): 91-98. <http://eudml.org/doc/215961>.

@article{Pfitzner1993,

abstract = {Banach spaces which are L-summands in their biduals - for example $l^1$, the predual of any von Neumann algebra, or the dual of the disc algebra - have Pełczyński’s property (V*), which means that, roughly speaking, the space in question is either reflexive or is weakly sequentially complete and contains many complemented copies of $l^1$.},

author = {Pfitzner, Hermann},

journal = {Studia Mathematica},

keywords = {Banach spaces which are -summable in their biduals; predual of any von Neumann algebra; Pełczyński’s property ; reflexive; weakly sequentially complete; complemented copies of },

language = {eng},

number = {1},

pages = {91-98},

title = {L-summands in their biduals have Pełczyński's property (V*)},

url = {http://eudml.org/doc/215961},

volume = {104},

year = {1993},

}

TY - JOUR

AU - Pfitzner, Hermann

TI - L-summands in their biduals have Pełczyński's property (V*)

JO - Studia Mathematica

PY - 1993

VL - 104

IS - 1

SP - 91

EP - 98

AB - Banach spaces which are L-summands in their biduals - for example $l^1$, the predual of any von Neumann algebra, or the dual of the disc algebra - have Pełczyński’s property (V*), which means that, roughly speaking, the space in question is either reflexive or is weakly sequentially complete and contains many complemented copies of $l^1$.

LA - eng

KW - Banach spaces which are -summable in their biduals; predual of any von Neumann algebra; Pełczyński’s property ; reflexive; weakly sequentially complete; complemented copies of

UR - http://eudml.org/doc/215961

ER -

## References

top- [1] J. Diestel, Sequences and Series in Banach Spaces, Springer, Berlin 1984.
- [2] G. A. Edgar, An ordering for the Banach spaces, Pacific J. Math. 108 (1983), 83-98. Zbl0533.46007
- [3] G. Godefroy, Sous-espaces bien disposés de ${L}^{1}$ - applications, Trans. Amer. Math. Soc. 286 (1984), 227-249. Zbl0521.46012
- [4] G. Godefroy, Existence and uniqueness of isometric preduals: a survey, in: Bor-Luh Lin (ed.), Banach Space Theory, Proc. of the Iowa Workshop on Banach Space Theory 1987, Contemp. Math. 85, Amer. Math. Soc., 1989, 131-193.
- [5] G. Godefroy et M. Talagrand, Nouvelles classes d'espaces de Banach à prédual unique, Séminaire d'Analyse Fonctionnelle de l'Ecole Polytechnique, 1980-81.
- [6] P. Harmand, M-Ideale und die Einbettung eines Banachraumes in seinen Bidualraum, Dissertation, FU Berlin, 1983.
- [7] P. Harmand, D. Werner, and W. Werner, M-Ideals in Banach Spaces and Banach Algebras, monograph in preparation. Zbl0789.46011
- [8] W. Hensgen, Contributions to the geometry of vector-valued ${H}^{\infty}$ and ${L}^{1}/{H}_{0}^{1}$ spaces, Habilitationsschrift, Universität Regensburg, 1992.
- [9] R. C. James, Uniformly non-square Banach spaces, Ann. of Math. 80 (1964), 542-550. Zbl0132.08902
- [10] D. Li, Espaces L-facteurs de leurs biduaux: bonne disposition, meilleure approximation et propriété de Radon-Nikodym, Quart. J. Math. Oxford (2) 38 (1987), 229-243. Zbl0631.46020
- [11] D. Li, Lifting properties for some quotients of ${L}^{1}$-spaces and other spaces L-summand in their bidual, Math. Z. 199 (1988), 321-329. Zbl0631.46021
- [12] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I, Springer, Berlin 1977. Zbl0362.46013
- [13] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces II, Springer, Berlin 1979. Zbl0403.46022
- [14] A. Pełczyński, On the isomorphism of the spaces m and M, Bull. Acad. Polon. Sci. 6 (1958), 695-696. Zbl0085.09406
- [15] M. Takesaki, Theory of Operator Algebras I, Springer, Berlin 1979. Zbl0436.46043
- [16] M. Talagrand, A new type of affine Borel functions, Math. Scand. 54 (1984), 183-188. Zbl0562.46005

## Citations in EuDML Documents

top## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.