L-summands in their biduals have Pełczyński's property (V*)

Hermann Pfitzner

Studia Mathematica (1993)

  • Volume: 104, Issue: 1, page 91-98
  • ISSN: 0039-3223

Abstract

top
Banach spaces which are L-summands in their biduals - for example l 1 , the predual of any von Neumann algebra, or the dual of the disc algebra - have Pełczyński’s property (V*), which means that, roughly speaking, the space in question is either reflexive or is weakly sequentially complete and contains many complemented copies of l 1 .

How to cite

top

Pfitzner, Hermann. "L-summands in their biduals have Pełczyński's property (V*)." Studia Mathematica 104.1 (1993): 91-98. <http://eudml.org/doc/215961>.

@article{Pfitzner1993,
abstract = {Banach spaces which are L-summands in their biduals - for example $l^1$, the predual of any von Neumann algebra, or the dual of the disc algebra - have Pełczyński’s property (V*), which means that, roughly speaking, the space in question is either reflexive or is weakly sequentially complete and contains many complemented copies of $l^1$.},
author = {Pfitzner, Hermann},
journal = {Studia Mathematica},
keywords = {Banach spaces which are -summable in their biduals; predual of any von Neumann algebra; Pełczyński’s property ; reflexive; weakly sequentially complete; complemented copies of },
language = {eng},
number = {1},
pages = {91-98},
title = {L-summands in their biduals have Pełczyński's property (V*)},
url = {http://eudml.org/doc/215961},
volume = {104},
year = {1993},
}

TY - JOUR
AU - Pfitzner, Hermann
TI - L-summands in their biduals have Pełczyński's property (V*)
JO - Studia Mathematica
PY - 1993
VL - 104
IS - 1
SP - 91
EP - 98
AB - Banach spaces which are L-summands in their biduals - for example $l^1$, the predual of any von Neumann algebra, or the dual of the disc algebra - have Pełczyński’s property (V*), which means that, roughly speaking, the space in question is either reflexive or is weakly sequentially complete and contains many complemented copies of $l^1$.
LA - eng
KW - Banach spaces which are -summable in their biduals; predual of any von Neumann algebra; Pełczyński’s property ; reflexive; weakly sequentially complete; complemented copies of
UR - http://eudml.org/doc/215961
ER -

References

top
  1. [1] J. Diestel, Sequences and Series in Banach Spaces, Springer, Berlin 1984. 
  2. [2] G. A. Edgar, An ordering for the Banach spaces, Pacific J. Math. 108 (1983), 83-98. Zbl0533.46007
  3. [3] G. Godefroy, Sous-espaces bien disposés de L 1 - applications, Trans. Amer. Math. Soc. 286 (1984), 227-249. Zbl0521.46012
  4. [4] G. Godefroy, Existence and uniqueness of isometric preduals: a survey, in: Bor-Luh Lin (ed.), Banach Space Theory, Proc. of the Iowa Workshop on Banach Space Theory 1987, Contemp. Math. 85, Amer. Math. Soc., 1989, 131-193. 
  5. [5] G. Godefroy et M. Talagrand, Nouvelles classes d'espaces de Banach à prédual unique, Séminaire d'Analyse Fonctionnelle de l'Ecole Polytechnique, 1980-81. 
  6. [6] P. Harmand, M-Ideale und die Einbettung eines Banachraumes in seinen Bidualraum, Dissertation, FU Berlin, 1983. 
  7. [7] P. Harmand, D. Werner, and W. Werner, M-Ideals in Banach Spaces and Banach Algebras, monograph in preparation. Zbl0789.46011
  8. [8] W. Hensgen, Contributions to the geometry of vector-valued H and L 1 / H 0 1 spaces, Habilitationsschrift, Universität Regensburg, 1992. 
  9. [9] R. C. James, Uniformly non-square Banach spaces, Ann. of Math. 80 (1964), 542-550. Zbl0132.08902
  10. [10] D. Li, Espaces L-facteurs de leurs biduaux: bonne disposition, meilleure approximation et propriété de Radon-Nikodym, Quart. J. Math. Oxford (2) 38 (1987), 229-243. Zbl0631.46020
  11. [11] D. Li, Lifting properties for some quotients of L 1 -spaces and other spaces L-summand in their bidual, Math. Z. 199 (1988), 321-329. Zbl0631.46021
  12. [12] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I, Springer, Berlin 1977. Zbl0362.46013
  13. [13] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces II, Springer, Berlin 1979. Zbl0403.46022
  14. [14] A. Pełczyński, On the isomorphism of the spaces m and M, Bull. Acad. Polon. Sci. 6 (1958), 695-696. Zbl0085.09406
  15. [15] M. Takesaki, Theory of Operator Algebras I, Springer, Berlin 1979. Zbl0436.46043
  16. [16] M. Talagrand, A new type of affine Borel functions, Math. Scand. 54 (1984), 183-188. Zbl0562.46005

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.