On Hilbert sets and C λ ( g ) -spaces with no subspace isomorphic to c 0

Daniel Li

Colloquium Mathematicae (1995)

  • Volume: 68, Issue: 1, page 67-77
  • ISSN: 0010-1354

How to cite

top

Li, Daniel. "On Hilbert sets and $C_{λ}(g)$-spaces with no subspace isomorphic to $c_0$." Colloquium Mathematicae 68.1 (1995): 67-77. <http://eudml.org/doc/210295>.

@article{Li1995,
author = {Li, Daniel},
journal = {Colloquium Mathematicae},
keywords = {locally compact abelian groups; Hilbert sets; Bourgain-Mikheev classes; thin subsets},
language = {eng},
number = {1},
pages = {67-77},
title = {On Hilbert sets and $C_\{λ\}(g)$-spaces with no subspace isomorphic to $c_0$},
url = {http://eudml.org/doc/210295},
volume = {68},
year = {1995},
}

TY - JOUR
AU - Li, Daniel
TI - On Hilbert sets and $C_{λ}(g)$-spaces with no subspace isomorphic to $c_0$
JO - Colloquium Mathematicae
PY - 1995
VL - 68
IS - 1
SP - 67
EP - 77
LA - eng
KW - locally compact abelian groups; Hilbert sets; Bourgain-Mikheev classes; thin subsets
UR - http://eudml.org/doc/210295
ER -

References

top
  1. [1] C. Bessaga and A. Pełczyński, On bases and unconditional convergence of series in Banach spaces, Studia Math. 57 (1958), 151-164. Zbl0084.09805
  2. [2] J. Bourgain, Sous-espaces L p invariants par translation sur le groupe de Cantor, C. R. Acad. Sci. Paris Sér. A 292 (1980), 39-40. Zbl0442.43016
  3. [3] J. Bourgain, Translation invariant complemented subspaces of L p , Studia Math. 75 (1982), 95-101. Zbl0495.43001
  4. [4] J. Bourgain, New Classes of L p -Spaces, Lecture Notes in Math. 889, Springer, 1983. 
  5. [5] J. Bourgain, Propriétés de décomposition pour les ensembles de Sidon, Bull. Soc. Math. France 111 (1983), 421-428. Zbl0546.43006
  6. [6] J. Bourgain, Sidon sets and Riesz products, Ann. Inst. Fourier (Grenoble) 35 (1) (1985), 136-148. Zbl0578.43008
  7. [7] M. Déchamps-Gondim, Ensembles de Sidon topologiques, ibid. 22 (1972), 51-79. 
  8.  
  9. [9] M. Déchamps-Gondim, Sur les compacts associés aux ensembles lacunaires, les ensembles de Sidon et quelques problèmes ouverts, Publ. Math. Orsay 84-01 (1984). Zbl0537.43018
  10. [10] H. G. Diamond, Elementary methods in the study of the distribution of prime numbers, Bull. Amer. Math. Soc. 7 (1982), 553-589. Zbl0505.10021
  11. [11] J. Diestel, Sequences and Series in Banach Spaces, Graduate Texts in Math. 92, Springer, 1984. 
  12. [12] J. Diestel and J. J. Uhl Jr., Vector Measures, Math. Surveys 15, Amer. Math. Soc., 1977. 
  13. [13] R. E. Dressler and L. Pigno, Rosenthal sets and Riesz sets, Duke Math. J. 41 (1974), 675-677. Zbl0306.43006
  14. [14] R. E. Dressler and L. Pigno, Une remarque sur les ensembles de Rosenthal et Riesz, C. R. Acad. Sci. Paris Sér. A 280 (1975), 1281-1282. Zbl0299.43001
  15. [15] J. J. F. Fournier and L. Pigno, Analytic and arithmetic properties of thin sets, Pacific J. Math. 105 (1983), 115-141. Zbl0491.43006
  16. [16] H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Number Theory, M. B. Porter Lectures, Princeton Univ. Press, Princeton, N.J., 1981. 
  17. [17] G. Godefroy, Sous-espaces bien disposés de L 1 ; applications, Trans. Amer. Math. Soc. 286 (1984), 227-249. Zbl0521.46012
  18. [18] G. Godefroy, On Riesz subsets of abelian discrete groups, Israel J. Math. 61 (1988), 301-331. Zbl0661.43003
  19. [19] G. Godefroy and B. Iochum, Arens-regularity of Banach algebras and the geometry of Banach spaces, J. Funct. Anal. 80 (1988), 47-59. Zbl0675.46017
  20. [20] G. Godefroy and F. Lust-Piquard, Some applications of geometry of Banach spaces to harmonic analysis, Colloq. Math. 60-61 (1990), 443-456. Zbl0759.46019
  21. [21] G. Godefroy et P. Saab, Quelques espaces de Banach ayant les propriétés (V) ou (V*) de A. Pełczyński, C. R. Acad. Sci. Paris Sér. I 303 (1986), 503-506. Zbl0602.46014
  22. [22] F. Gramain et Y. Meyer, Quelques fonctions moyenne-périodiques bornées, Colloq. Math. 33 (1975), 133-137. Zbl0334.42025
  23. [23] N. Hindman, Ultrafilters and combinatorial number theory, in: Lecture Notes in Math. 751, Springer, 1979, 119-184. 
  24. [24] N. Hindman, On density, translates and pairwise sums of integers, J. Combin. Theory Ser. A 33 (1982), 147-157. Zbl0496.10036
  25. [25] B. Host, J.-F. Méla et F. Parreau, Analyse harmonique des mesures, Astérisque 133-134 (1986). Zbl0589.43001
  26. [26] D. Li, Espaces L-facteurs de leurs biduaux : bonne disposition, meilleure approximation et propriété de Radon-Nikodym, Quart. J. Math. Oxford (2) 38 (1987), 229-243. Zbl0631.46020
  27. [27] D. Li, Lifting properties for some quotients of L 1 -spaces and other spaces L-summand in their bidual, Math. Z. 199 (1988), 321-329. Zbl0631.46021
  28. [28] D. Li, A class of Riesz sets, Proc. Amer. Math. Soc. 119 (1993), 889-892. Zbl0796.43004
  29. [29] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I, Ergeb. Math. Grenzgeb. 92, Springer, 1977. Zbl0362.46013
  30. [30] J. M. Lopez and K. A. Ross, Sidon Sets, Lecture Notes in Pure and Appl. Math. 13, Marcel Dekker, New York, 1975. 
  31. [31] F. Lust-Piquard, Ensembles de Rosenthal et ensembles de Riesz, C. R. Acad. Sci. Paris Sér. A 282 (1976), 833-835. Zbl0324.43007
  32. [32] F. Lust-Piquard, Propriétés harmoniques et géométriques des sous-espaces invariants par translation de L ( G ) , thèse, Orsay, 1978. Zbl0462.43006
  33. [33] F. Lust-Piquard, Propriétés géométriques des sous-espaces invariants par translation de L 1 ( G ) et C(G), Sém. Géom. Espaces Banach, exp. no. 26 (1977-78), Ecole Polytechnique. Zbl0462.43006
  34. [34] F. Lust-Piquard, L'espace des fonctions presque-périodiques dont le spectre est contenu dans un ensemble compact dénombrable a la propriété de Schur, Colloq. Math. 41 (1979), 274-284. Zbl0462.43007
  35. [35] F. Lust-Piquard, Eléments ergodiques et totalement ergodiques dans L ( Γ ) , Studia Math. 69 (1981), 191-225. Zbl0476.43001
  36. [36] F. Lust-Piquard, Bohr local properties of C Λ ( T ) , Colloq. Math. 58 (1989), 29-38. Zbl0694.43005
  37. [37] F. Lust-Piquard and W. Schachermayer, Functions in L ( G ) and associated convolution operators, Studia Math. 93 (1989), 109-136. Zbl0722.43004
  38. [38] J.-F. Méla, Approximation diophantienne et ensembles lacunaires, Bull. Soc. Math. France Mém. 19 (1969), 26-54. Zbl0198.09404
  39. [39] Y. Meyer, Spectres des mesures et mesures absolument continues, Studia Math. 30 (1968), 87-99. Zbl0159.42501
  40. [40] Y. Meyer, Recent advances in spectral synthesis, in: Lecture Notes in Math. 266, Springer, 1972, 239-253. 
  41. [41] I. M. Miheev [I. M. Mikheev], On lacunary series, Math. USSR-Sb. 27 (1975), 481-502. Zbl0371.42006
  42. [42] I. M. Miheev [I. M. Mikheev], Trigonometric series with gaps, Analysis Math. 9 (1983), 43-55. Zbl0544.10062
  43. [43] M. B. Nathanson, Sumsets contained in infinite sets of integers, J. Combin. Theory Ser. A 28 (1980), 150-155. Zbl0451.10036
  44. [44] E. Odell and H. P. Rosenthal, A double-dual characterization of separable Banach spaces containing l 1 , Israel J. Math. 20 (1975), 375-384. Zbl0312.46031
  45. [45] A. Pełczyński, Banach spaces on which every unconditionally converging operator is weakly compact, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 10 (1962), 641-648. Zbl0107.32504
  46. [46] H. Pfitzner, L-summands in their biduals have pełczyński's property (V*), Studia Math. 104 (1993), 91-98. Zbl0815.46020
  47. [47] H. P. Rosenthal, On trigonometric series associated with weak* closed subspaces of continuous functions, J. Math. Mech. 17 (1967), 485-490. Zbl0194.16703
  48. [48] M. Talagrand, Pettis integral and measure theory, Mem. Amer. Math. Soc. 307 (1984). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.