Interpolation of operators when the extreme spaces are
Studia Mathematica (1993)
- Volume: 104, Issue: 2, page 133-150
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topBastero, Jesús, and Ruiz, Francisco. "Interpolation of operators when the extreme spaces are $L^{∞}$." Studia Mathematica 104.2 (1993): 133-150. <http://eudml.org/doc/215965>.
@article{Bastero1993,
abstract = {Under some assumptions on the pair $(A_0,B_0)$, we study equivalence between interpolation properties of linear operators and monotonicity conditions for a pair (Y,Z) of rearrangement invariant quasi-Banach spaces when the extreme spaces of the interpolation are $L^∞$. Weak and restricted weak intermediate spaces fall within our context. Applications to classical Lorentz and Lorentz-Orlicz spaces are given.},
author = {Bastero, Jesús, Ruiz, Francisco},
journal = {Studia Mathematica},
keywords = {interpolation properties of linear operators; monotonicity conditions; rearrangement invariant quasi-Banach spaces; Lorentz-Orlicz spaces},
language = {eng},
number = {2},
pages = {133-150},
title = {Interpolation of operators when the extreme spaces are $L^\{∞\}$},
url = {http://eudml.org/doc/215965},
volume = {104},
year = {1993},
}
TY - JOUR
AU - Bastero, Jesús
AU - Ruiz, Francisco
TI - Interpolation of operators when the extreme spaces are $L^{∞}$
JO - Studia Mathematica
PY - 1993
VL - 104
IS - 2
SP - 133
EP - 150
AB - Under some assumptions on the pair $(A_0,B_0)$, we study equivalence between interpolation properties of linear operators and monotonicity conditions for a pair (Y,Z) of rearrangement invariant quasi-Banach spaces when the extreme spaces of the interpolation are $L^∞$. Weak and restricted weak intermediate spaces fall within our context. Applications to classical Lorentz and Lorentz-Orlicz spaces are given.
LA - eng
KW - interpolation properties of linear operators; monotonicity conditions; rearrangement invariant quasi-Banach spaces; Lorentz-Orlicz spaces
UR - http://eudml.org/doc/215965
ER -
References
top- [1] M. A. Ariño and B. Muckenhoupt, Maximal functions on classical Lorentz spaces and Hardy's inequality with weights for nonincreasing functions, Trans. Amer. Math. Soc. 320 (2) (1990), 727-735. Zbl0716.42016
- [2] C. Bennett and R. Sharpley, Interpolation of Operators, Academic Press, 1988. Zbl0647.46057
- [3] J. Bergh and J. Löfström, Interpolation Spaces. An Introduction, Springer, 1976.
- [4] D. W. Boyd, Indices of function spaces and their relationship to interpolation, Canad. J. Math. 21 (1969), 1245-1254. Zbl0184.34802
- [5] A. P. Calderón, Spaces between and and the theorem of Marcinkiewicz, Studia Math. 26 (1966), 273-299.
- [6] M. Cwikel, K-divisibility of the K-functional and Calderón couples, Ark. Mat. 22 (1) (1984), 39-62. Zbl0535.46049
- [7] J. García-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland Math. Stud. 116, North-Holland, Amsterdam 1985.
- [8] N. J. Kalton, Endomorphisms of symmetric function spaces, Indiana Univ. Math. J. 34 (2) (1985), 225-247. Zbl0572.46029
- [9] A. Kamińska, Some remarks on Orlicz-Lorentz spaces, Math. Nachr. 147 (1990), 29-38. Zbl0742.46013
- [10] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces II, Springer, 1979. Zbl0403.46022
- [11] G. Lorentz and T. Shimogaki, Interpolation theorems for the pairs of spaces and , Trans. Amer. Math. Soc. 139 (1971), 207-221. Zbl0244.46044
- [12] L. Maligranda, A generalization of the Shimogaki theorem, Studia Math. 71 (1981), 69-83. Zbl0496.46019
- [13] L. Maligranda, Indices and interpolation, Dissertationes Math. 234 (1985).
- [14] M. Mastyło, Interpolation of linear operators in Calderón-Lozanovskii spaces, Comment. Math. 26 (2) (1986), 247-256. Zbl0636.46064
- [15] S. J. Montgomery-Smith, Comparison of Orlicz-Lorentz spaces, Studia Math. 103 (1992), 161-189. Zbl0814.46023
- [16] B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207-226. Zbl0236.26016
- [17] Y. Raynaud, On Lorentz-Sharpley spaces, in: Proc. Workshop "Interpolation Spaces and Related Topics", Haifa, June 1990, IMCP, Vol. 5 (1992), 207-228.
- [18] E. Sawyer, Boundedness of classical operators on classical Lorentz spaces, Studia Math. 96 (1990), 145-158. Zbl0705.42014
- [19] R. Sharpley, Spaces and interpolation, J. Funct. Anal. 11 (1972), 479-513. Zbl0245.46043
- [20] T. Shimogaki, An interpolation theorem on Banach function spaces, Studia Math. 31 (1968), 233-240. Zbl0172.40101
- [21] A. Torchinsky, Interpolation of operators and Orlicz classes, ibid. 59 (1976), 177-207. Zbl0348.46027
- [22] M. Zippin, Interpolation of operators of weak type between rearrangement invariant function spaces, J. Funct. Anal. 7 (1971), 267-284. Zbl0224.46038
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.