B M O ψ -spaces and applications to extrapolation theory

Stefan Geiss

Studia Mathematica (1997)

  • Volume: 122, Issue: 3, page 235-274
  • ISSN: 0039-3223

Abstract

top
We investigate a scale of B M O ψ -spaces defined with the help of certain Lorentz norms. The results are applied to extrapolation techniques concerning operators defined on adapted sequences. Our extrapolation works simultaneously with two operators, starts with B M O ψ - L -estimates, and arrives at L p - L p -estimates, or more generally, at estimates between K-functionals from interpolation theory.

How to cite

top

Geiss, Stefan. "$BMO_ψ$-spaces and applications to extrapolation theory." Studia Mathematica 122.3 (1997): 235-274. <http://eudml.org/doc/216374>.

@article{Geiss1997,
abstract = {We investigate a scale of $BMO_ψ$-spaces defined with the help of certain Lorentz norms. The results are applied to extrapolation techniques concerning operators defined on adapted sequences. Our extrapolation works simultaneously with two operators, starts with $BMO_ψ$-$L_∞$-estimates, and arrives at $L_p$-$L_p$-estimates, or more generally, at estimates between K-functionals from interpolation theory.},
author = {Geiss, Stefan},
journal = {Studia Mathematica},
keywords = {scale of -spaces; Lorentz norms; extrapolation techniques; operators defined on adapted sequences; --estimates; K-functionals; interpolation theory},
language = {eng},
number = {3},
pages = {235-274},
title = {$BMO_ψ$-spaces and applications to extrapolation theory},
url = {http://eudml.org/doc/216374},
volume = {122},
year = {1997},
}

TY - JOUR
AU - Geiss, Stefan
TI - $BMO_ψ$-spaces and applications to extrapolation theory
JO - Studia Mathematica
PY - 1997
VL - 122
IS - 3
SP - 235
EP - 274
AB - We investigate a scale of $BMO_ψ$-spaces defined with the help of certain Lorentz norms. The results are applied to extrapolation techniques concerning operators defined on adapted sequences. Our extrapolation works simultaneously with two operators, starts with $BMO_ψ$-$L_∞$-estimates, and arrives at $L_p$-$L_p$-estimates, or more generally, at estimates between K-functionals from interpolation theory.
LA - eng
KW - scale of -spaces; Lorentz norms; extrapolation techniques; operators defined on adapted sequences; --estimates; K-functionals; interpolation theory
UR - http://eudml.org/doc/216374
ER -

References

top
  1. [1] N. H. Asmar and S. J. Montgomery-Smith, On the distribution of Sidon series, Ark. Mat. 31 (1993), 13-26. Zbl0836.43011
  2. [2] N. L. Bassily and J. Mogyoródi, On the B M O Φ -spaces with general Young function, Ann. Univ. Sci. Budapest Eötvös Sect. Math. 27 (1984), 215-227. Zbl0581.60036
  3. [3] J. Bastero and F. J. Ruiz, Interpolation of operators when the extreme spaces are L , Studia Math. 104 (1993), 133-150. Zbl0814.46063
  4. [4] C. Bennett and R. Sharpley, Interpolation of Operators, Academic Press, 1988. Zbl0647.46057
  5. [5] J. Bergh and J. Löfström, Interpolation Spaces. An Introduction, Springer, 1976. 
  6. [6] J. Bourgain, On the behaviour of the constant in the Littlewood-Paley inequality, in: J. Lindenstrauss and V. D. Milman (eds.), Israel Seminar, GAFA 1987/88, Lecture Notes in Math. 1376, Springer, 1989, 202-208. 
  7. [7] J. Bourgain and W. J. Davis, Martingale transforms and complex uniform convexity, Trans. Amer. Math. Soc. 294 (1986), 501-515. Zbl0638.46011
  8. [8] D. L. Burkholder, Distribution function inequalities for martingales, Ann. Probab. 1 (1973), 19-42. Zbl0301.60035
  9. [9] D. L. Burkholder, Martingale transforms and the geometry of Banach spaces, in: Probability in Banach spaces III, 1980, Lecture Notes in Math. 860, Springer, 1981, 35-50. 
  10. [10] D. L. Burkholder, B. J. Davis, and R. F. Gundy, Integral inequalities for convex functions of operators on martingales, Proc. 6th Berkeley Sympos. Math. Statist. Probab., Vol. 2, Univ. of California Press, 1972, 223-240. Zbl0253.60056
  11. [11] D. L. Burkholder and R. F. Gundy, Extrapolation and interpolation of quasilinear operators on martingales, Acta Math. 124 (1970), 249-304. Zbl0223.60021
  12. [12] S. Chang, M. Wilson and J. Wolff, Some weighted norm inequalities concerning the Schrödinger operators, Comment. Math. Helv. 60 (1985), 217-246. Zbl0575.42025
  13. [13] V. H. de la Peña, S. J. Montgomery-Smith, and J. Szulga, Contraction and decoupling inequalities for multilinear forms and U-statistics, Ann. Probab. 22 (1994), 1745-1765. Zbl0861.60008
  14. [14] A. M. Garsia, Martingale Inequalities, Seminar Notes on Recent Progress, Benjamin, Reading, 1973. 
  15. [15] E. Giné and J. Zinn, Central limit theorems and weak laws of large numbers in certain Banach spaces, Z. Wahrsch. Verw. Gebiete 62 (1983), 323-354. Zbl0488.60009
  16. [16] P. Hitczenko, Upper bounds for the L p -norms of martingales, Probab. Theory Related Fields 86 (1990), 225-238. Zbl0677.60017
  17. [17] F. John, Quasi-isometric mappings, in: Seminari 1962-1963 di Analisi, Algebra, Geometria e Topologia, Vol. II, Ed. Cremonese, Rome, 1965, 462-473. 
  18. [18] F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14 (1961), 415-426. Zbl0102.04302
  19. [19] W. B. Johnson and G. Schechtman, Sums of independent random variables in rearrangement invariant function spaces, Ann. Probab. 17 (1989), 789-808. Zbl0674.60051
  20. [20] M. Ledoux and M. Talagrand, Probability in Banach Spaces, Springer, 1991. 
  21. [21] A. Pietsch, Operator Ideals, North-Holland, Amsterdam, 1980. 
  22. [22] G. Pisier, Martingales with values in uniformly convex spaces, Isreal J. Math. 20 (1975), 326-350. Zbl0344.46030
  23. [23] E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, 1993. Zbl0821.42001
  24. [24] J.-O. Strömberg, Bounded mean oscillation with Orlicz norms and duality of Hardy spaces, Indiana Univ. Math. J. 28 (1979), 511-544. Zbl0429.46016
  25. [25] G. Wang, Some sharp inequalities for conditionally symmetric martingales, PhD thesis, Univ. of Illinois, 1989. 
  26. [26] F. Weisz, Martingale operators and Hardy spaces generated by them, Studia Math. 114 (1995), 39-70. Zbl0822.60043

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.