Weighted estimates for commutators of linear operators

Josefina Alvarez; Richard Bagby; Douglas Kurtz; Carlos Pérez

Studia Mathematica (1993)

  • Volume: 104, Issue: 2, page 195-209
  • ISSN: 0039-3223

Abstract

top
We study boundedness properties of commutators of general linear operators with real-valued BMO functions on weighted L p spaces. We then derive applications to particular important operators, such as Calderón-Zygmund type operators, pseudo-differential operators, multipliers, rough singular integrals and maximal type operators.

How to cite

top

Alvarez, Josefina, et al. "Weighted estimates for commutators of linear operators." Studia Mathematica 104.2 (1993): 195-209. <http://eudml.org/doc/215969>.

@article{Alvarez1993,
abstract = {We study boundedness properties of commutators of general linear operators with real-valued BMO functions on weighted $L^p$ spaces. We then derive applications to particular important operators, such as Calderón-Zygmund type operators, pseudo-differential operators, multipliers, rough singular integrals and maximal type operators.},
author = {Alvarez, Josefina, Bagby, Richard, Kurtz, Douglas, Pérez, Carlos},
journal = {Studia Mathematica},
keywords = {bounded mean oscillation; singular integrals; maximal functions; weighted inequalities; functions of bounded mean oscillation; boundedness; commutators; linear operators; BMO functions; Calderón-Zygmund type operators; pseudo-differential operators; multipliers; maximal type operators},
language = {eng},
number = {2},
pages = {195-209},
title = {Weighted estimates for commutators of linear operators},
url = {http://eudml.org/doc/215969},
volume = {104},
year = {1993},
}

TY - JOUR
AU - Alvarez, Josefina
AU - Bagby, Richard
AU - Kurtz, Douglas
AU - Pérez, Carlos
TI - Weighted estimates for commutators of linear operators
JO - Studia Mathematica
PY - 1993
VL - 104
IS - 2
SP - 195
EP - 209
AB - We study boundedness properties of commutators of general linear operators with real-valued BMO functions on weighted $L^p$ spaces. We then derive applications to particular important operators, such as Calderón-Zygmund type operators, pseudo-differential operators, multipliers, rough singular integrals and maximal type operators.
LA - eng
KW - bounded mean oscillation; singular integrals; maximal functions; weighted inequalities; functions of bounded mean oscillation; boundedness; commutators; linear operators; BMO functions; Calderón-Zygmund type operators; pseudo-differential operators; multipliers; maximal type operators
UR - http://eudml.org/doc/215969
ER -

References

top
  1. [1] J. Alvarez, An algebra of L p -bounded pseudo-differential operators, J. Math. Anal. Appl. 94 (1983), 268-282. Zbl0519.35084
  2. [2] J. Alvarez and J. Hounie, Estimates for the kernel and continuity properties of pseudo-differential operators, Ark. Mat. 28 (1990), 1-22. Zbl0713.35106
  3. [3] J. Alvarez and M. Milman, H p continuity properties of Calderón-Zygmund-type operators, J. Math. Anal. Appl. 118 (1986), 63-79. Zbl0596.42006
  4. [4] J. Alvarez and M. Milman, Vector valued inequalities for strongly singular Calderón-Zygmund operators, Rev. Mat. Iberoamericana 2 (1986), 405-426. Zbl0634.42016
  5. [5] C. Bennett and R. Sharpley, Interpolation of Operators, Academic Press, Boston 1988. Zbl0647.46057
  6. [6] S. Chanillo and A. Torchinsky, Sharp function and weighted L p estimates for a class of pseudo-differential operators, Ark. Mat. 24 (1986), 1-25. Zbl0609.35085
  7. [7] R. Coifman et Y. Meyer, Au delà des opérateurs pseudo-différentiels, Astérisque 57 (1978). Zbl0483.35082
  8. [8] R. Coifman, R. Rochberg and G. Weiss, Factorization theorems for Hardy spaces in several variables, Ann. of Math. 103 (1976), 611-635. Zbl0326.32011
  9. [9] R. L. Combs, Weighted norm inequalities with general weights for multipliers on functions with vanishing moments, Ph.D. thesis, New Mexico State Univ., Las Cruces, N.Mex., 1991. 
  10. [10] J. Duoandikoetxea, Weighted norm inequalities for homogeneous singular integrals, preprint. Zbl0770.42011
  11. [11] J. Duoandikoetxea and J. L. Rubio de Francia, Maximal and singular integral operators via Fourier transform estimates, Invent. Math. 84 (1986), 541-561. Zbl0568.42012
  12. [12] N. Dunford and J. Schwartz, Linear Operators, Part I, Wiley Interscience, New York 1958. Zbl0084.10402
  13. [13] C. Fefferman, Inequalities for strongly singular convolution operators, Acta Math. 123 (1969), 9-36. Zbl0188.42601
  14. [14] C. Fefferman and E. M. Stein, H p spaces of several variables, ibid. 129 (1972), 137-193. Zbl0257.46078
  15. [15] J. García-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland Math. Stud. 116, North-Holland, Amsterdam 1985. 
  16. [16] S. Hofmann, Weighted norm inequalities and vector-valued inequalities for certain rough operators, preprint. Zbl0804.42010
  17. [17] L. Hörmander, Pseudo-differential operators and hypo-elliptic operators, in: Proc. Sympos. Pure Math. 10, Amer. Math. Soc., 1967, 138-183. 
  18. [18] J. Hounie, On the L 2 continuity of pseudo-differential operators, Comm. Partial Differential Equations 11 (1986), 765-778. Zbl0597.35121
  19. [19] R. A. Hunt and W.-S. Young, A weighted norm inequality for Fourier series, Bull. Amer. Math. Soc. 80 (1974), 274-277. Zbl0283.42004
  20. [20] S. Janson, Mean oscillation and commutators of singular integrals operators, Ark. Mat. 16 (1978), 263-270. Zbl0404.42013
  21. [21] T. Kato, Perturbation Theory for Linear Operators, Springer, 1976. Zbl0342.47009
  22. [22] D. S. Kurtz, Operator estimates using the sharp function, Pacific J. Math. 139 (1989), 267-277. Zbl0646.42014
  23. [23] D. S. Kurtz and R. L. Wheeden, Results on weighted norm inequalities for multipliers, Trans. Amer. Math. Soc. 255 (1979), 343-362. Zbl0427.42004
  24. [24] N. Miller, Weighted Sobolev spaces and pseudodifferential operators with smooth symbols, ibid. 269 (1982), 91-109. Zbl0482.35082
  25. [25] B. Muckenhoupt, R. L. Wheeden and W.-S. Young, Sufficiency conditions for L p multipliers with general weights, ibid. 300 (1987), 463-502. Zbl0641.42011
  26. [26] C. Neugebauer, Inserting A p -weights, Proc. Amer. Math. Soc. 87 (1983), 644-648. 
  27. [27] J. L. Rubio de Francia, F. J. Ruiz and J. L. Torrea, Calderón-Zygmund theory for operator valued kernels, Adv. in Math. 62 (1986), 7-48. Zbl0627.42008
  28. [28] E. Sawyer, Multipliers on Besov and power-weighted L 2 spaces, Indiana Univ. Math. J. 33 (1984), 353-366. Zbl0546.42011
  29. [29] E. M. Stein, Interpolation of linear operators, Trans. Amer. Math. Soc. 83 (1956), 482-492. Zbl0072.32402
  30. [30] J. O. Strömberg and A. Torchinsky, Weighted Hardy Spaces, Lecture Notes in Math. 1381, Springer, 1989. 
  31. [31] D. K. Watson, Weighted estimates for singular integrals via Fourier transform estimates, Duke Math. J. 60 (1990), 389-400. Zbl0711.42025
  32. [32] A. C. Zaanen, Interpolation, North-Holland, 1967. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.