Weighted estimates for commutators of linear operators
Josefina Alvarez; Richard Bagby; Douglas Kurtz; Carlos Pérez
Studia Mathematica (1993)
- Volume: 104, Issue: 2, page 195-209
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topAlvarez, Josefina, et al. "Weighted estimates for commutators of linear operators." Studia Mathematica 104.2 (1993): 195-209. <http://eudml.org/doc/215969>.
@article{Alvarez1993,
abstract = {We study boundedness properties of commutators of general linear operators with real-valued BMO functions on weighted $L^p$ spaces. We then derive applications to particular important operators, such as Calderón-Zygmund type operators, pseudo-differential operators, multipliers, rough singular integrals and maximal type operators.},
author = {Alvarez, Josefina, Bagby, Richard, Kurtz, Douglas, Pérez, Carlos},
journal = {Studia Mathematica},
keywords = {bounded mean oscillation; singular integrals; maximal functions; weighted inequalities; functions of bounded mean oscillation; boundedness; commutators; linear operators; BMO functions; Calderón-Zygmund type operators; pseudo-differential operators; multipliers; maximal type operators},
language = {eng},
number = {2},
pages = {195-209},
title = {Weighted estimates for commutators of linear operators},
url = {http://eudml.org/doc/215969},
volume = {104},
year = {1993},
}
TY - JOUR
AU - Alvarez, Josefina
AU - Bagby, Richard
AU - Kurtz, Douglas
AU - Pérez, Carlos
TI - Weighted estimates for commutators of linear operators
JO - Studia Mathematica
PY - 1993
VL - 104
IS - 2
SP - 195
EP - 209
AB - We study boundedness properties of commutators of general linear operators with real-valued BMO functions on weighted $L^p$ spaces. We then derive applications to particular important operators, such as Calderón-Zygmund type operators, pseudo-differential operators, multipliers, rough singular integrals and maximal type operators.
LA - eng
KW - bounded mean oscillation; singular integrals; maximal functions; weighted inequalities; functions of bounded mean oscillation; boundedness; commutators; linear operators; BMO functions; Calderón-Zygmund type operators; pseudo-differential operators; multipliers; maximal type operators
UR - http://eudml.org/doc/215969
ER -
References
top- [1] J. Alvarez, An algebra of -bounded pseudo-differential operators, J. Math. Anal. Appl. 94 (1983), 268-282. Zbl0519.35084
- [2] J. Alvarez and J. Hounie, Estimates for the kernel and continuity properties of pseudo-differential operators, Ark. Mat. 28 (1990), 1-22. Zbl0713.35106
- [3] J. Alvarez and M. Milman, continuity properties of Calderón-Zygmund-type operators, J. Math. Anal. Appl. 118 (1986), 63-79. Zbl0596.42006
- [4] J. Alvarez and M. Milman, Vector valued inequalities for strongly singular Calderón-Zygmund operators, Rev. Mat. Iberoamericana 2 (1986), 405-426. Zbl0634.42016
- [5] C. Bennett and R. Sharpley, Interpolation of Operators, Academic Press, Boston 1988. Zbl0647.46057
- [6] S. Chanillo and A. Torchinsky, Sharp function and weighted estimates for a class of pseudo-differential operators, Ark. Mat. 24 (1986), 1-25. Zbl0609.35085
- [7] R. Coifman et Y. Meyer, Au delà des opérateurs pseudo-différentiels, Astérisque 57 (1978). Zbl0483.35082
- [8] R. Coifman, R. Rochberg and G. Weiss, Factorization theorems for Hardy spaces in several variables, Ann. of Math. 103 (1976), 611-635. Zbl0326.32011
- [9] R. L. Combs, Weighted norm inequalities with general weights for multipliers on functions with vanishing moments, Ph.D. thesis, New Mexico State Univ., Las Cruces, N.Mex., 1991.
- [10] J. Duoandikoetxea, Weighted norm inequalities for homogeneous singular integrals, preprint. Zbl0770.42011
- [11] J. Duoandikoetxea and J. L. Rubio de Francia, Maximal and singular integral operators via Fourier transform estimates, Invent. Math. 84 (1986), 541-561. Zbl0568.42012
- [12] N. Dunford and J. Schwartz, Linear Operators, Part I, Wiley Interscience, New York 1958. Zbl0084.10402
- [13] C. Fefferman, Inequalities for strongly singular convolution operators, Acta Math. 123 (1969), 9-36. Zbl0188.42601
- [14] C. Fefferman and E. M. Stein, spaces of several variables, ibid. 129 (1972), 137-193. Zbl0257.46078
- [15] J. García-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland Math. Stud. 116, North-Holland, Amsterdam 1985.
- [16] S. Hofmann, Weighted norm inequalities and vector-valued inequalities for certain rough operators, preprint. Zbl0804.42010
- [17] L. Hörmander, Pseudo-differential operators and hypo-elliptic operators, in: Proc. Sympos. Pure Math. 10, Amer. Math. Soc., 1967, 138-183.
- [18] J. Hounie, On the continuity of pseudo-differential operators, Comm. Partial Differential Equations 11 (1986), 765-778. Zbl0597.35121
- [19] R. A. Hunt and W.-S. Young, A weighted norm inequality for Fourier series, Bull. Amer. Math. Soc. 80 (1974), 274-277. Zbl0283.42004
- [20] S. Janson, Mean oscillation and commutators of singular integrals operators, Ark. Mat. 16 (1978), 263-270. Zbl0404.42013
- [21] T. Kato, Perturbation Theory for Linear Operators, Springer, 1976. Zbl0342.47009
- [22] D. S. Kurtz, Operator estimates using the sharp function, Pacific J. Math. 139 (1989), 267-277. Zbl0646.42014
- [23] D. S. Kurtz and R. L. Wheeden, Results on weighted norm inequalities for multipliers, Trans. Amer. Math. Soc. 255 (1979), 343-362. Zbl0427.42004
- [24] N. Miller, Weighted Sobolev spaces and pseudodifferential operators with smooth symbols, ibid. 269 (1982), 91-109. Zbl0482.35082
- [25] B. Muckenhoupt, R. L. Wheeden and W.-S. Young, Sufficiency conditions for multipliers with general weights, ibid. 300 (1987), 463-502. Zbl0641.42011
- [26] C. Neugebauer, Inserting -weights, Proc. Amer. Math. Soc. 87 (1983), 644-648.
- [27] J. L. Rubio de Francia, F. J. Ruiz and J. L. Torrea, Calderón-Zygmund theory for operator valued kernels, Adv. in Math. 62 (1986), 7-48. Zbl0627.42008
- [28] E. Sawyer, Multipliers on Besov and power-weighted spaces, Indiana Univ. Math. J. 33 (1984), 353-366. Zbl0546.42011
- [29] E. M. Stein, Interpolation of linear operators, Trans. Amer. Math. Soc. 83 (1956), 482-492. Zbl0072.32402
- [30] J. O. Strömberg and A. Torchinsky, Weighted Hardy Spaces, Lecture Notes in Math. 1381, Springer, 1989.
- [31] D. K. Watson, Weighted estimates for singular integrals via Fourier transform estimates, Duke Math. J. 60 (1990), 389-400. Zbl0711.42025
- [32] A. C. Zaanen, Interpolation, North-Holland, 1967.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.