Generalized Morrey spaces associated to Schrödinger operators and applications
Nguyen Ngoc Trong; Le Xuan Truong
Czechoslovak Mathematical Journal (2018)
- Volume: 68, Issue: 4, page 953-986
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topTrong, Nguyen Ngoc, and Truong, Le Xuan. "Generalized Morrey spaces associated to Schrödinger operators and applications." Czechoslovak Mathematical Journal 68.4 (2018): 953-986. <http://eudml.org/doc/294682>.
@article{Trong2018,
abstract = {We first introduce new weighted Morrey spaces related to certain non-negative potentials satisfying the reverse Hölder inequality. Then we establish the weighted strong-type and weak-type estimates for the Riesz transforms and fractional integrals associated to Schrödinger operators. As an application, we prove the Calderón-Zygmund estimates for solutions to Schrödinger equation on these new spaces. Our results cover a number of known results.},
author = {Trong, Nguyen Ngoc, Truong, Le Xuan},
journal = {Czechoslovak Mathematical Journal},
keywords = {Morrey space; Schrödinger operator; Riesz transform; fractional integral; Calderón-Zygmund estimate},
language = {eng},
number = {4},
pages = {953-986},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Generalized Morrey spaces associated to Schrödinger operators and applications},
url = {http://eudml.org/doc/294682},
volume = {68},
year = {2018},
}
TY - JOUR
AU - Trong, Nguyen Ngoc
AU - Truong, Le Xuan
TI - Generalized Morrey spaces associated to Schrödinger operators and applications
JO - Czechoslovak Mathematical Journal
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 68
IS - 4
SP - 953
EP - 986
AB - We first introduce new weighted Morrey spaces related to certain non-negative potentials satisfying the reverse Hölder inequality. Then we establish the weighted strong-type and weak-type estimates for the Riesz transforms and fractional integrals associated to Schrödinger operators. As an application, we prove the Calderón-Zygmund estimates for solutions to Schrödinger equation on these new spaces. Our results cover a number of known results.
LA - eng
KW - Morrey space; Schrödinger operator; Riesz transform; fractional integral; Calderón-Zygmund estimate
UR - http://eudml.org/doc/294682
ER -
References
top- Adams, D. R., Xiao, J., 10.1512/iumj.2004.53.2470, Indiana Univ. Math. J. 53 (2004), 1629-1663. (2004) Zbl1100.31009MR2106339DOI10.1512/iumj.2004.53.2470
- Alvarez, J., Bagby, R. J., Kurtz, D. S., Pérez, C., 10.4064/sm-104-2-195-209, Stud. Math. 104 (1993), 195-209. (1993) Zbl0809.42006MR1211818DOI10.4064/sm-104-2-195-209
- Bongioanni, B., Harboure, E., Salinas, O., 10.1016/j.jmaa.2009.03.048, J. Math. Anal. Appl. 357 (2009), 115-131. (2009) Zbl1180.42013MR2526811DOI10.1016/j.jmaa.2009.03.048
- Bongioanni, B., Harboure, E., Salinas, O., 10.1016/j.jmaa.2010.08.008, J. Math. Anal. Appl. 373 (2011), 563-579. (2011) Zbl1203.42029MR2720705DOI10.1016/j.jmaa.2010.08.008
- Bui, T. A., The weighted norm inequalities for Riesz transforms of magnetic Schrödinger operators, Differ. Integral Equ. 23 (2010), 811-826. (2010) Zbl1240.42034MR2675584
- Bui, T. A., 10.1016/j.bulsci.2013.06.007, Bull. Sci. Math. 138 (2014), 270-292. (2014) Zbl1284.42068MR3175023DOI10.1016/j.bulsci.2013.06.007
- Coifman, R. R., Fefferman, C., 10.4064/sm-51-3-241-250, Stud. Math. 51 (1974), 241-250. (1974) Zbl0291.44007MR0358205DOI10.4064/sm-51-3-241-250
- Coulhon, T., Duong, X. T., 10.1090/S0002-9947-99-02090-5, Trans. Am. Math. Soc. 351 (1999), 1151-1169. (1999) Zbl0973.58018MR1458299DOI10.1090/S0002-9947-99-02090-5
- Cruz-Uribe, D., Fiorenza, A., 10.1007/s10587-007-0051-y, Czech. Math. J. 57 (2007), 153-160. (2007) Zbl1174.42013MR2309956DOI10.1007/s10587-007-0051-y
- Duong, X. T., Xiao, J., Yan, L., 10.1007/s00041-006-6057-2, J. Fourier Anal. Appl. 13 (2007), 87-111. (2007) Zbl1133.42017MR2296729DOI10.1007/s00041-006-6057-2
- Dziubański, J., Garrigós, G., Martínez, T., Torrea, J. L., Zienkiewicz, J., 10.1007/s00209-004-0701-9, Mat. Z. 249 (2005), 329-356. (2005) Zbl1136.35018MR2115447DOI10.1007/s00209-004-0701-9
- Dziubański, J., Zienkiewicz, J., 10.4064/bc56-0-4, Fourier Analysis and Related Topics W. Żelazko Banach Center Publications 56, Polish Academy of Sciences, Institute of Mathematics, Warsaw (2002), 45-53. (2002) Zbl1039.42018MR1971563DOI10.4064/bc56-0-4
- Feuto, J., Fofana, I., Koua, K., Spaces of functions with integrable fractional mean on locally compact groups, Afr. Mat., Sér. III French 15 (2003), 73-91. (2003) Zbl1047.43004MR2031873
- Feuto, J., Fofana, I., Koua, K., Integrable fractional mean functions on spaces of homogeneous type, Afr. Diaspora J. Math. 9 (2010), 8-30. (2010) Zbl1239.43002MR2516238
- Fofana, I., Study of a class of function spaces containing Lorentz spaces, French Afr. Mat. (2) 1 (1988), 29-50. (1988) Zbl1210.46022MR1080380
- Guo, Z., Li, P., Peng, L., 10.1016/j.jmaa.2007.05.024, J. Math. Anal. Appl. 341 (2008), 421-432. (2008) Zbl1140.47035MR2394095DOI10.1016/j.jmaa.2007.05.024
- John, F., Nirenberg, L., 10.1002/cpa.3160140317, Commun. Pure Appl. Math. 14 (1961), 415-426. (1961) Zbl0102.04302MR0131498DOI10.1002/cpa.3160140317
- Johnson, R., Neugebauer, C. J., 10.2307/2001798, Trans. Am. Math. Soc. 328 (1991), 639-666. (1991) Zbl0756.42015MR1018575DOI10.2307/2001798
- Komori, Y., Shirai, S., 10.1002/mana.200610733, Math. Nachr. 282 (2009), 219-231. (2009) Zbl1160.42008MR2493512DOI10.1002/mana.200610733
- Ly, F. K., 10.1016/j.jmaa.2013.08.049, J. Math. Anal. Appl. 410 (2014), 391-402. (2014) Zbl1319.42020MR3109848DOI10.1016/j.jmaa.2013.08.049
- Morrey, C., 10.2307/1989904, Trans. Am. Math. Soc. 43 (1938), 126-166. (1938) Zbl0018.40501MR1501936DOI10.2307/1989904
- Muckenhoupt, B., Wheeden, R. L., 10.2307/1996833, Trans. Am. Math. Soc. 192 (1974), 261-274. (1974) Zbl0289.26010MR0340523DOI10.2307/1996833
- Peetre, J., 10.1016/0022-1236(69)90022-6, J. Funct. Anal. 4 (1969), 71-87. (1969) Zbl0175.42602MR0241965DOI10.1016/0022-1236(69)90022-6
- Rao, M. M., Ren, Z. D., Theory of Orlicz Spaces, Pure and Applied Mathematics 146, Marcel Dekker, New York (1991). (1991) Zbl0724.46032MR1113700
- Samko, N., 10.1016/j.jmaa.2008.09.021, J. Math. Anal. Appl. 350 (2009), 56-72. (2009) Zbl1155.42005MR2476892DOI10.1016/j.jmaa.2008.09.021
- Segovia, C., Torrea, J. L., 10.5565/PUBLMAT_35191_09, Publ. Mat., Barc. 35 (1991), 209-235. (1991) Zbl0746.42012MR1103616DOI10.5565/PUBLMAT_35191_09
- Shen, Z., 10.5802/aif.1463, Ann. Inst. Fourier 45 (1995), 513-546. (1995) Zbl0818.35021MR1343560DOI10.5802/aif.1463
- Stein, E. M., Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Mathematical Series 43, Princeton University Press, Princeton (1993). (1993) Zbl0821.42001MR1232192
- Tang, L., 10.1515/forum-2013-0070, Forum Math. 27 (2015), 2491-2532. (2015) Zbl1319.42014MR3365805DOI10.1515/forum-2013-0070
- Tang, L., Dong, J., 10.1016/j.jmaa.2009.01.043, J. Math. Anal. Appl. 355 (2009), 101-109. (2009) Zbl1166.35321MR2514454DOI10.1016/j.jmaa.2009.01.043
- Wang, H., Boundedness of fractional integral operators with rough kernels on weighted Morrey spaces, Acta Math. Sin., Chin. Ser. Chinese. English summary 56 (2013), 175-186. (2013) Zbl1289.42057MR3097397
- Xiao, J., 10.4310/DPDE.2007.v4.n3.a2, Dyn. Partial Differ. Equ. 4 (2007), 227-245. (2007) Zbl1147.42008MR2353632DOI10.4310/DPDE.2007.v4.n3.a2
- Zhang, P., 10.1007/s10114-010-8562-0, Acta Math. Sin., Engl. Ser. 26 (2010), 1709-1722. (2010) Zbl1202.42043MR2672812DOI10.1007/s10114-010-8562-0
- Zhong, J., Harmonic analysis for some Schrödinger type operators, Ph.D. Thesis, Princeton University (1993). (1993) MR2689454
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.