Generalized Morrey spaces associated to Schrödinger operators and applications

Nguyen Ngoc Trong; Le Xuan Truong

Czechoslovak Mathematical Journal (2018)

  • Volume: 68, Issue: 4, page 953-986
  • ISSN: 0011-4642

Abstract

top
We first introduce new weighted Morrey spaces related to certain non-negative potentials satisfying the reverse Hölder inequality. Then we establish the weighted strong-type and weak-type estimates for the Riesz transforms and fractional integrals associated to Schrödinger operators. As an application, we prove the Calderón-Zygmund estimates for solutions to Schrödinger equation on these new spaces. Our results cover a number of known results.

How to cite

top

Trong, Nguyen Ngoc, and Truong, Le Xuan. "Generalized Morrey spaces associated to Schrödinger operators and applications." Czechoslovak Mathematical Journal 68.4 (2018): 953-986. <http://eudml.org/doc/294682>.

@article{Trong2018,
abstract = {We first introduce new weighted Morrey spaces related to certain non-negative potentials satisfying the reverse Hölder inequality. Then we establish the weighted strong-type and weak-type estimates for the Riesz transforms and fractional integrals associated to Schrödinger operators. As an application, we prove the Calderón-Zygmund estimates for solutions to Schrödinger equation on these new spaces. Our results cover a number of known results.},
author = {Trong, Nguyen Ngoc, Truong, Le Xuan},
journal = {Czechoslovak Mathematical Journal},
keywords = {Morrey space; Schrödinger operator; Riesz transform; fractional integral; Calderón-Zygmund estimate},
language = {eng},
number = {4},
pages = {953-986},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Generalized Morrey spaces associated to Schrödinger operators and applications},
url = {http://eudml.org/doc/294682},
volume = {68},
year = {2018},
}

TY - JOUR
AU - Trong, Nguyen Ngoc
AU - Truong, Le Xuan
TI - Generalized Morrey spaces associated to Schrödinger operators and applications
JO - Czechoslovak Mathematical Journal
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 68
IS - 4
SP - 953
EP - 986
AB - We first introduce new weighted Morrey spaces related to certain non-negative potentials satisfying the reverse Hölder inequality. Then we establish the weighted strong-type and weak-type estimates for the Riesz transforms and fractional integrals associated to Schrödinger operators. As an application, we prove the Calderón-Zygmund estimates for solutions to Schrödinger equation on these new spaces. Our results cover a number of known results.
LA - eng
KW - Morrey space; Schrödinger operator; Riesz transform; fractional integral; Calderón-Zygmund estimate
UR - http://eudml.org/doc/294682
ER -

References

top
  1. Adams, D. R., Xiao, J., 10.1512/iumj.2004.53.2470, Indiana Univ. Math. J. 53 (2004), 1629-1663. (2004) Zbl1100.31009MR2106339DOI10.1512/iumj.2004.53.2470
  2. Alvarez, J., Bagby, R. J., Kurtz, D. S., Pérez, C., 10.4064/sm-104-2-195-209, Stud. Math. 104 (1993), 195-209. (1993) Zbl0809.42006MR1211818DOI10.4064/sm-104-2-195-209
  3. Bongioanni, B., Harboure, E., Salinas, O., 10.1016/j.jmaa.2009.03.048, J. Math. Anal. Appl. 357 (2009), 115-131. (2009) Zbl1180.42013MR2526811DOI10.1016/j.jmaa.2009.03.048
  4. Bongioanni, B., Harboure, E., Salinas, O., 10.1016/j.jmaa.2010.08.008, J. Math. Anal. Appl. 373 (2011), 563-579. (2011) Zbl1203.42029MR2720705DOI10.1016/j.jmaa.2010.08.008
  5. Bui, T. A., The weighted norm inequalities for Riesz transforms of magnetic Schrödinger operators, Differ. Integral Equ. 23 (2010), 811-826. (2010) Zbl1240.42034MR2675584
  6. Bui, T. A., 10.1016/j.bulsci.2013.06.007, Bull. Sci. Math. 138 (2014), 270-292. (2014) Zbl1284.42068MR3175023DOI10.1016/j.bulsci.2013.06.007
  7. Coifman, R. R., Fefferman, C., 10.4064/sm-51-3-241-250, Stud. Math. 51 (1974), 241-250. (1974) Zbl0291.44007MR0358205DOI10.4064/sm-51-3-241-250
  8. Coulhon, T., Duong, X. T., 10.1090/S0002-9947-99-02090-5, Trans. Am. Math. Soc. 351 (1999), 1151-1169. (1999) Zbl0973.58018MR1458299DOI10.1090/S0002-9947-99-02090-5
  9. Cruz-Uribe, D., Fiorenza, A., 10.1007/s10587-007-0051-y, Czech. Math. J. 57 (2007), 153-160. (2007) Zbl1174.42013MR2309956DOI10.1007/s10587-007-0051-y
  10. Duong, X. T., Xiao, J., Yan, L., 10.1007/s00041-006-6057-2, J. Fourier Anal. Appl. 13 (2007), 87-111. (2007) Zbl1133.42017MR2296729DOI10.1007/s00041-006-6057-2
  11. Dziubański, J., Garrigós, G., Martínez, T., Torrea, J. L., Zienkiewicz, J., 10.1007/s00209-004-0701-9, Mat. Z. 249 (2005), 329-356. (2005) Zbl1136.35018MR2115447DOI10.1007/s00209-004-0701-9
  12. Dziubański, J., Zienkiewicz, J., 10.4064/bc56-0-4, Fourier Analysis and Related Topics W. Żelazko Banach Center Publications 56, Polish Academy of Sciences, Institute of Mathematics, Warsaw (2002), 45-53. (2002) Zbl1039.42018MR1971563DOI10.4064/bc56-0-4
  13. Feuto, J., Fofana, I., Koua, K., Spaces of functions with integrable fractional mean on locally compact groups, Afr. Mat., Sér. III French 15 (2003), 73-91. (2003) Zbl1047.43004MR2031873
  14. Feuto, J., Fofana, I., Koua, K., Integrable fractional mean functions on spaces of homogeneous type, Afr. Diaspora J. Math. 9 (2010), 8-30. (2010) Zbl1239.43002MR2516238
  15. Fofana, I., Study of a class of function spaces containing Lorentz spaces, French Afr. Mat. (2) 1 (1988), 29-50. (1988) Zbl1210.46022MR1080380
  16. Guo, Z., Li, P., Peng, L., 10.1016/j.jmaa.2007.05.024, J. Math. Anal. Appl. 341 (2008), 421-432. (2008) Zbl1140.47035MR2394095DOI10.1016/j.jmaa.2007.05.024
  17. John, F., Nirenberg, L., 10.1002/cpa.3160140317, Commun. Pure Appl. Math. 14 (1961), 415-426. (1961) Zbl0102.04302MR0131498DOI10.1002/cpa.3160140317
  18. Johnson, R., Neugebauer, C. J., 10.2307/2001798, Trans. Am. Math. Soc. 328 (1991), 639-666. (1991) Zbl0756.42015MR1018575DOI10.2307/2001798
  19. Komori, Y., Shirai, S., 10.1002/mana.200610733, Math. Nachr. 282 (2009), 219-231. (2009) Zbl1160.42008MR2493512DOI10.1002/mana.200610733
  20. Ly, F. K., 10.1016/j.jmaa.2013.08.049, J. Math. Anal. Appl. 410 (2014), 391-402. (2014) Zbl1319.42020MR3109848DOI10.1016/j.jmaa.2013.08.049
  21. Morrey, C., 10.2307/1989904, Trans. Am. Math. Soc. 43 (1938), 126-166. (1938) Zbl0018.40501MR1501936DOI10.2307/1989904
  22. Muckenhoupt, B., Wheeden, R. L., 10.2307/1996833, Trans. Am. Math. Soc. 192 (1974), 261-274. (1974) Zbl0289.26010MR0340523DOI10.2307/1996833
  23. Peetre, J., 10.1016/0022-1236(69)90022-6, J. Funct. Anal. 4 (1969), 71-87. (1969) Zbl0175.42602MR0241965DOI10.1016/0022-1236(69)90022-6
  24. Rao, M. M., Ren, Z. D., Theory of Orlicz Spaces, Pure and Applied Mathematics 146, Marcel Dekker, New York (1991). (1991) Zbl0724.46032MR1113700
  25. Samko, N., 10.1016/j.jmaa.2008.09.021, J. Math. Anal. Appl. 350 (2009), 56-72. (2009) Zbl1155.42005MR2476892DOI10.1016/j.jmaa.2008.09.021
  26. Segovia, C., Torrea, J. L., 10.5565/PUBLMAT_35191_09, Publ. Mat., Barc. 35 (1991), 209-235. (1991) Zbl0746.42012MR1103616DOI10.5565/PUBLMAT_35191_09
  27. Shen, Z., 10.5802/aif.1463, Ann. Inst. Fourier 45 (1995), 513-546. (1995) Zbl0818.35021MR1343560DOI10.5802/aif.1463
  28. Stein, E. M., Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Mathematical Series 43, Princeton University Press, Princeton (1993). (1993) Zbl0821.42001MR1232192
  29. Tang, L., 10.1515/forum-2013-0070, Forum Math. 27 (2015), 2491-2532. (2015) Zbl1319.42014MR3365805DOI10.1515/forum-2013-0070
  30. Tang, L., Dong, J., 10.1016/j.jmaa.2009.01.043, J. Math. Anal. Appl. 355 (2009), 101-109. (2009) Zbl1166.35321MR2514454DOI10.1016/j.jmaa.2009.01.043
  31. Wang, H., Boundedness of fractional integral operators with rough kernels on weighted Morrey spaces, Acta Math. Sin., Chin. Ser. Chinese. English summary 56 (2013), 175-186. (2013) Zbl1289.42057MR3097397
  32. Xiao, J., 10.4310/DPDE.2007.v4.n3.a2, Dyn. Partial Differ. Equ. 4 (2007), 227-245. (2007) Zbl1147.42008MR2353632DOI10.4310/DPDE.2007.v4.n3.a2
  33. Zhang, P., 10.1007/s10114-010-8562-0, Acta Math. Sin., Engl. Ser. 26 (2010), 1709-1722. (2010) Zbl1202.42043MR2672812DOI10.1007/s10114-010-8562-0
  34. Zhong, J., Harmonic analysis for some Schrödinger type operators, Ph.D. Thesis, Princeton University (1993). (1993) MR2689454

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.